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PRINCIPLED VARIANCE REDUCTION TECHNIQUES FOR REAL TIME PATIENT-
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Major Director: Dr. Jeffrey Williamson 
Professor, Department of Radiation Oncology, Division of Medical Physics 

 
 

This dissertation describes the application of two principled variance reduction strategies to 

increase the efficiency for two applications within medical physics. The first, called correlated 

Monte Carlo (CMC) applies to patient-specific, permanent-seed brachytherapy (PSB) dose 

calculations. The second, called adjoint-biased forward Monte Carlo (ABFMC), is used to 

compute cone-beam computed tomography (CBCT) scatter projections. CMC was applied for 

two PSB cases: a clinical post-implant prostate, and a breast with a simulated lumpectomy 

cavity. CMC computes the dose difference, D , between the highly correlated dose computing 

homogeneous and heterogeneous geometries. The particle transport in the heterogeneous 

geometry assumed a purely homogeneous environment, and altered particle weights accounted 

for bias. Average gains of 37 to 60 are reported from using CMC, relative to un-correlated Monte 

Carlo (UMC) calculations, for the prostate and breast CTV’s, respectively. To further increase 
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the efficiency up to 1500 fold above UMC, an approximation called interpolated correlated 

Monte Carlo (ICMC) was applied. ICMC computes D  using CMC on a low-resolution (LR) 

spatial grid followed by interpolation to a high-resolution (HR) voxel grid followed. The 

interpolated, HR D is then summed with a HR, pre-computed, homogeneous dose map. ICMC 

computes an approximate, but accurate, HR heterogeneous dose distribution from LR MC 

calculations achieving an average 2% standard deviation within the prostate and breast CTV’s in 

1.1 sec and 0.39 sec, respectively. Accuracy for 80% of the voxels using ICMC is within 3% for 

anatomically realistic geometries. Second, for CBCT scatter projections, ABFMC was 

implemented via weight windowing using a solution to the adjoint Boltzmann transport equation 

computed either via the discrete ordinates method (DOM), or a MC implemented forward-

adjoint importance generator (FAIG). ABFMC, implemented via DOM or FAIG, was tested for a 

single elliptical water cylinder using a primary point source (PPS) and a phase-space source 

(PSS). The best gains were found by using the PSS yielding average efficiency gains of 250 

relative to non-weight windowed MC utilizing the PPS. Furthermore, computing 360 projections 

on a 40 30 pixel grid requires only 48 min on a single CPU core allowing clinical use via 

parallel processing techniques. 
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1. Introduction 

Towards the end of the Second World War the ENIAC, the world’s first electronic multi-purpose 

computer, was created and opened the door to scientific computing. It was immediately applied 

to computing particle flux from thermo-nuclear reactions through a process known as statistical 

sampling, the name “Monte Carlo” (MC) being coined shortly thereafter1. Following over a 

decade of use for particle physics transport, Berger published his seminal paper on the condensed 

history technique for coupled electron-photon transport in 19632. This technique substantially 

increased the efficiency of the coupled electron-photon transport calculations and paved the way 

for MC radiation transport to be adapted for medical applications. Today, MC is used extensively 

in all subfields within medical physics and is the current gold standard for all radiation transport 

simulations for quantities of interest to the field. 

This dissertation focusses on increasing the efficiency of MC solutions to two different low-

energy photon transport problems within medical physics. First, the time required for MC 

computed patient-specific brachytherapy dose calculations is too great for clinical application. 

Likewise, MC simulated cone-beam computed tomography (CBCT) scatter projections are too 

time intensive for clinical adoption within scatter mitigation strategies. The remaining sections of 

this chapter present the major concepts, background, and rationale for this study. The final 

section then summarizes the aims and novelty of the remaining chapters. 

1.1 The Boltzmann transport equation (BTE) 

To begin, the time independent Boltzmann transport equation is presented: 
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 · ( , , ) ( , ) ( , , )

ˆ( , , ) ( , , ) ( , , | ) '

E E E

S E E E dE d





    

       
Ω r Ω r r Ω

r Ω r E Ω Ω Ω r Ω
 (1.1.1) 

where   represents the fluence of particles, and r, E, and Ω  represent position, energy and 

particle trajectory respectively. Furthermore,   represents the linear attenuation coefficient, and 

ˆ  represents the total cross section for all interactions that produce a scattered photon.  The first 

term,  · ( , , )E Ω r Ω , is called the streaming operator, and represents the net number of 

particles having energy E and trajectory Ω  leaving volume dV, centered about r . The second 

term, ( , ) ( , , )E E r r Ω , represents the loss of particles with energy and trajectory, ( , )E Ω , that 

change that change phase-space position  within dV due to collision. ,( , )S Er Ω  is a general 

source term giving rise to particles in dV with energy E and trajectory Ω  due to fixed, primary-

particle sources. The final term, ˆ( , , ) ( , , | )E E E dE d        r Ω Ω Ω r Ω , can be viewed as a 

“collision source” where particles within dV having energy E’  and trajectory Ω change phase-

space positions due to collision to energy E and trajectory Ω . The integral form of this equation 

is solved via the Monte Carlo (MC) method for some scoring quantity of interest, such as 

absorbed dose or scatter photon signal in a detector.  

The BTE can be solved both in the forward sense, running from '', ,E EΩ Ω  - higher energy 

states to lower energy states, or in the adjoint sense, and running from ,,E E Ω Ω  - lower 

energy states to higher energy states. Instead of the particle flux, the adjoint version of the BTE 

describes for the adjoint flux or function, *( , , )E r Ω ; its relevance will be discussed in later 

sections of this chapter and is a major topic in Chapter 5. 

The BTE can be solved numerically through deterministic or stochastic methods. The most 

common deterministic approach is called the discrete ordinate method (DOM). Unlike statistical 
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methods such as Monte Carlo, DOM calculations solve the BTE directly and numerically by 

discretizing the phase space: energy, spatial position, and solid angle. DOM does not solve the 

BTE exactly, due to the discretization of the phase space  , , Er Ω , introducing a level of 

systematic error. On the other hand, the Monte Carlo stochastic method for solving the BTE does 

not discretize phase space, but produces an accurate, non-biased solution with a level of 

statistical, or random uncertainty. The Monte Carlo method is considered the gold standard for 

radiation transport simulations, as mentioned previously, but has historically required long 

computational run-times to converge to a solution with little statistical uncertainty. 

1.2 Variance reduction 

Though unbiased, a drawback of MC simulations, as stated previously, is that it provides a 

statistically inexact solution: there is a level of uncertainty or variance (square of standard 

deviation,  ) associated with the final score due to averaging the total contribution from each 

successive photon history. Two generally used unbiased methods to reduce score variance are 

increasing the number of simulated histories and employing variance reduction (VR) strategies. 

The former is usually undesirable since variance is inversely proportional to the number of 

histories simulated leading to high CPU times for precise solutions. The latter technique, VR, 

uses clever methods to reduce the CPU time to reach a desired level of uncertainty. Though not 

VR, another method routinely used to reduce CPU time is through approximations to the physics 

transport model. Though this method can be quite effective, great care must be taken to not 

introduce unwanted systematic bias. Actual VR strategies can be classified into two groups. 

First, enhanced scoring or estimation techniques are designed to increase the number of scores to 

a detector using the same number of histories. An example would be the expected track-length 

estimator that provides a score to every detector along a photon trajectory instead of only at 
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interaction sites. Second, biased sampling schemes are available that alter the transport of 

photons so that CPU time is better focused on simulating events that have high “importance” to 

the final score. A by-product of many VR methods is the necessity of particle weight 

manipulation to remove any systematic error induced by sampling from biased probability 

density functions (PDF’s). 

1.3 Brachytherapy dosimetry in heterogeneous media 

1.3.1 Effects of tissue heterogeneities on low-energy brachytherapy dose distributions 

The current standard of practice for brachytherapy dose calculation is the AAPM Task Group 43 

protocol (TG-43)3, which assumes a patient composed of liquid water and ignores seed-to-seed 

attenuation and other applicator-shielding effects. Several studies have documented that tissue 

heterogeneities and inter-seed attenuation significantly influence traditional low-energy (125I or 

103Pd) permanent seed implants. 

In prostate permanent seed brachytherapy (PSB) treatments, for example, the combined effect of 

modeling tissue heterogeneities and inter-seed attenuation in post-implant dosimetry is to 

decrease average D90 (dose delivered to 90% of the treatment volume, CTV) by 7% to 13%4-9, 

depending on the density of seeds within the implant. Carrier et al4 showed a 5-7% decrease in 

the V200 (volume that receives a minimum of 200% of the prescribed dose) from taking into 

account tissue heterogeneities alone assuming a purely homogeneous prostate tissue 

environment. Using more realistic anatomical models show that TG-43 overestimates D90 by as 

much as 9%. Chibani et al showed that 1%-5% mass fractions of calcifications in the prostate 

volume can decrease D100 (dose delivered to 100% of the CTV) by as much as 58%6.  
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Noting the deficiencies of TG-43, Carrier et al concluded that a heterogeneous dose-calculation 

engine is needed to improve understanding of the dose-outcome relationship to further improve 

patient outcomes5. 

Furthermore, Maughan et al studied the mass-energy absorption coefficients for various 

chemically assayed tumors, noting the percentage difference between the mass-energy 

absorption coefficient for tumor and water varied from 5% to 17% at 30 keV13. In the external 

beam energy range, these differences were limited to less than 3%. The higher percentage of 

local absorption differences between water and the tumor samples at lower energies is the due to 

the increased cross-section for photoelectric absorption. The photoelectric effect is strongly 

dependent on material atomic composition, highlighting the need for accurate modeling of 

anatomical geometries. Unfortunately, ICRU14 and ICRP15 recommended tissue compositions 

and densities are based upon very sparse tissue sample measurements that exhibit substantial 

sample-to-sample variability16-18. As an example of sparseness, the weight fraction of water for 

prostate as recommended by ICRP 89 was derived from a single specimen taken from a 14 year 

old boy in 193519. As an example of variability, Hammerstein performed a chemical analysis on 

mastectomy specimens revealing 8% to 10% variations in glandular and adipose tissue 

compositions by weight of carbon and oxygen. These variations translate into 8% to 15% 

uncertainties in the linear attenuation coefficient at 20 keV20.  

1.3.2 Current Understanding of the Dose Response Relationship in Low-energy 

brachytherapy 

In a large retrospective study on patient outcome for PSB prostate implants, Stone et al21 found a 

correlation between biochemical relapse-free survival (bRFS) rates and the D90, especially for 

intermediate and high risk patients. Another study22 found local failure to be  associated with a 
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low D90 among other dose-response descriptors.  This all would suggest that delivering a higher 

D90 would significantly increase bRFS. Unfortunately, in another large retrospective study of 

over 5000 PSB prostate patients23, it was found that 54.5% of all patients experienced one or 

more of the following types of treatment complications: urinary, bowel, and erectile. Of these, 

14.7% required further invasive procedures. Still additional studies have correlated toxicities to 

hot spots (increased V150 and V200), and a higher D90. These studies suggest that a consistent 

increase to D90 to achieve better bRFS rates would also increase the incidence of toxicities 

observed in patient outcomes.  

Since breast-PSB is still in its infancy, very limited outcome data is available. One study by 

Keller et al24 reported the relationship between maximum skin dose and corresponding toxicities 

for a total of 95 patients that were treated between 2004 and 2011. Because of the large 

variability in the maximum skin dose among patients, no correlation was found between the 

maximum skin dose and related toxicities.  

Neglecting tissue heterogeneities introduces potentially large delivery errors, having both 

systematic and random components which give rise to suboptimal clinical dose prescriptions in 

different ways. The systematic component is characterized by a mean offset (nominal vs. actual) 

over the entire patient population, represented by a translational shift in the dose-response curve. 

The random component, on the other hand, results in the patient-to-patient variability of the 

error, thereby reducing the slope of the dose-response curve. 

Figure 1.1 shows an example of a systematic error in breast PSB that arises from computing dose 

to medium that is primarily adipose tissue instead of water. There is a stark contrast in the 

particle fluence distribution between the anatomical-breast environment and water because of the 
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decreased linear attenuation coefficient of adipose tissue relative to that of water. As stated 

previously, this difference causes the region outside the PTV to have an increased dose while the 

region within the PTV receives a decreased dose relative to TG-43 calculations. This behavior 

will be similar for all breast patients because of the larger fraction, on average, of adipose tissue 

over fibro-glandular resulting in a systematic shift in the dose-response curve for all patients. 

Another example of a systematic shift is the difference in the dose distributions observed 

between electronic and 192Ir HDR brachytherapy, creating difficulties when comparing their dose 

outcomes. Even when dwarfed by random errors, systematic shifts are always important since 

they result in shifts of the average dose in an entire patient population which may already be 

receiving doses close to normal tissue tolerances25. 

Random errors on the other hand are best described by the patient-to-patient variability in tissue 

composition, and anatomical differences for both the breast and prostate treatment sites. The 

decreased slope of the dose-response curve causes local control to be reduced while 

simultaneously increasing toxicities.  

The systematic and random errors may or may not need to be corrected for, but they first must be 

characterized through the use of model based dose calculation algorithms (MBDCA’s) that 

incorporate tissue heterogeneities and compared with other sources of error such as organ 

motion, and seed placement accuracy.  

1.3.3 Solutions to overcome TG-43 deficiencies 

Primarily, three classes of dose calculation algorithms have been proposed to clinically realize 

the potential of MBDCA’s: first, collapsed-cone superposition convolution (CCSC)26,27; second, 

discrete-ordinate methods (DOM)28; and third, Monte Carlo simulation (MC). Carlsson-Tedgren 
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et al29 has shown the efficacy of using CCSC for accurate sub-minute brachytherapy dose 

calculations, but to date their studies have been limited to simple applicator scatter corrections 

and not applied to patient-specific treatment planning. Recently, Varian Medical Systems 

released BrachyVision Acuros30 that utilizes a radiation therapy specific rewrite of the DOM 

code ATTILA28 and can compute most HDR dose-distributions in under 10 min. Deterministic 

solutions offer substantial speed enhancements, but are subject to systematic errors, e.g., ray-

effects, due to overly coarse discretizations of the radiation transport phase space. Zourari et al30 

showed that for a single 192Ir source in homogeneous medium, most differences between Acuros 

and MC were within 1%. These were systematic differences between Acuros and MC near the 

longitudinal axis of the source including a general over-estimation of the radial dose function by 

1% and an oscillatory pattern exhibited along the radial dose function due to spatial 

discretization and ray effects. However, max errors between Acuros and MC were less than 2% 

and represent strong agreement with Monte Carlo simulations. DOM parameters are, however, 

often tuned to produce good results for a certain problem domain31. 

CT-based MC methods, on the other hand, can be deployed in both applicator-attenuation and 

tissue-heterogeneity settings so to completely avoid systematic bias, for both low and high 

energy brachytherapy. However, the CPU time-intensiveness of MC transport solutions has 

limited its use in the clinical setting. For example, using Geant4 Carrier et al5 reported post-

implant Monte Carlo dose calculations run times of 4 hrs on a cluster of 8 Intel Xenon 2.4 GHz 

CPU’s to give a statistical uncertainty of 0.1% in the V200 for 31.3 1.3 2.5 mm   voxels. This is 

neither realistic for pretreatment planning nor for intraoperative plan adjustment. Optimization 

for treatment planning purposes is even a concern for accelerated codes5,6,8 that employ various 

variance reduction techniques32. For example, PTRAN_CT requires 15 min to achieve an 
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average 2% uncertainty within the CTV for 1 mm3 voxels on a single 3.8 GHz processor33. One 

approach to overcome this limitation is to employ additional sophisticated variance reduction 

techniques to reduce the CPU time for a clinically acceptable uncertainty to be achieved on cost 

effective equipment. Due to the limitations imposed by current DOM and MC solutions, there is 

still a need for an efficient, robust, and accurate general purpose brachytherapy dose-calculation 

engine that overcomes the deficiencies of TG-43. 

1.3.4 Correlated sampling 

Correlated Monte Carlo (CMC) was first proposed for accelerating MC brachytherapy dose 

calculations by Hedtjärn et al who demonstrated the potential for order-of-magnitude efficiency 

gains in simple two-dimensional geometries. Rather than computing absorbed dose directly, 

CMC estimates the dose difference between heterogeneous and homogeneous geometries on a 

voxel-by-voxel basis using photon histories sampled from the collision and transport kernels 

associated with the homogeneous environment. Any bias introduced into the heterogeneous dose 

from this biased sampling process is removed by applying an appropriate photon weight 

correction factor.  

For a simple cylinder geometry, Hedtjarn et al show that CMC achieved efficiency gains as large 

as 104 with efficiency losses confined to regions that had a dose delivered to heterogeneous 

media 50% of the dose delivered to a corresponding homogeneous environment. Le et al further 

extended the application of CMC to CT-based Monte Carlo representations34. Via the VCU code, 

PTRAN_CT, they were able to compute delivered patient dose within the CTV in less than 5.4 

min with an average percent standard deviation of 2% in a 1×1×1 mm3 grid35. I have made 

further enhancements to the code structure to allow streamlined simulation and reduced this time 

down to less than 40 sec under the same conditions. Some of these enhancements include 
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1.4.1 CBCT scatter effects on reconstructed image quality 

Detected patient scatter radiation is defined as the detector array signal arising from scattered 

photons that are produced from primary beam interactions within the patient. Scatter induces 

artifacts such as loss of contrast, cupping, and streaking between high contrast materials. Typical 

scatter-to-primary ratios (SPR) in CBCT range from 0.5-0.9536,40,  compared to 0.0141 in 3rd 

generation fan-beam CT (FBCT) detector geometries. FBCT only acquires a very thin slice at a 

time limiting the field of view (FOV) while CBCT has a vastly larger scattering volume due to 

using a flat panel detector that sweeps over a large longitudinal FOV in a single circular orbit. 

These unwanted but detected scatter photons degrade image quality, giving rise to cupping 

artifacts, streaking artifacts, reduced contrast, and reconstructed Hounsfield unit (HU) 

inaccuracies42. The cupping artifact is characterized by lower HU toward the center of the 

reconstructed image than the edge (see Figure 1.2) and prevents proper rendering of the image 

with window/level settings.  

Contrast also is degraded by an increase in SPR. Siewerdsen et al showed, for a simple phantom, 

that contrast falls from 5% to 2.2% when the SPR increases from 10% to 120%43. Accurate and 

uniform HU are needed to support computed aided detection (CAD), tissue classification44, and 

accurate quantitative assessment of vascular kinetics using injected contrast agents. Zhu et al 

showed that for a small homogeneous ROI within the Catphan©600, CBCT cupping artifacts 

will cause the HU to be underestimated by roughly 100 with a mean variation of ± 5045 whereas 

±3-5 HU is typical for FBCT. Furthermore for breast-dedicated CBCT (BD-CBCT), Altunbas et 

al found a similar underestimated HU shift with a standard deviation ±20 HU for a medium sized 

breast before correction. For a large mastectomy specimen, the underestimated HU shift  was 

found to be ~170±65 HU46. Additionally, the overall image blurring and inaccurate HU’s from 
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detected scatter reduces low-contrast detectability, thus reducing the clinical effectiveness of 

BD-CBCT. In radiotherapy, the decreased image quality associated with non-scatter corrected 

CBCT images has been shown to increase the variability of physician contouring relative to 

CBCT, thus diminishing the potential effectiveness of CBCT guided radiotherapy47. Image 

quality for CBCT could conceivably be improved if effective scatter and noise mitigation 

strategies could be applied48.  

1.4.2 CBCT scatter mitigation strategies 

While many methods have been proposed for mitigating scatter-related artifacts, no corrective 

technique exists that is simultaneously clinically practical, efficient, and clearly effective in 

improving CBCT image quality. The use of anti-scatter grids is a common technique that has 

varying results that depend on scan acquisition parameters. Siewerdsen et al showed that anti-

scatter grids in CBCT increase the contrast-to-noise ratio (CNR) only for large reconstruction 

voxel sizes or for very high SPR conditions characteristic of pelvic or thoracic imaging49. He 

further showed that anti-scatter grids offer no benefits for high-resolution CBCT imaging such as 

BD-CBCT, a conclusion confirmed by Kyriakou50. A more successful and recent study has 

shown that using a primary beam modulator allows one to separate the scatter from the total 

signal51. Unfortunately, like all scatter subtraction methods, this technique leaves behind the 

scatter noise component in the remaining projection image thus reducing the contrast-to-noise 

ratio and should be corrected for separately to further improve image quality. 

Proposed methods for mitigating scatter effects fail for one of the three following reasons: (a) 

use highly approximate or inaccurate scatter estimates that diminish image quality46,52-55; (b) 

require too much CPU time to be clinically feasible48,56,57 even when accurate and robust; or (c) 

require multiple scans thereby increasing patient dose or scanning time and have been shown to 
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be extremely effective45,58. All proposed solutions in types (b) and (c) and most in (a) include 

some approach to separate the scatter signal from the primary. While the increased doses implied 

by type (c) solutions may be acceptable in radiotherapy applications, other applications require 

minimal patient doses, such as BD-CBCT where dose is constrained to that of two-view 

mammography37. The most accurate and robust solution is subtraction of scatter estimates 

derived from patient-specific MC simulations that use an approximate reconstructed image as 

input geometry. Using such a method, Lazos et al48 was able to recover lost contrast to match 

that of images reconstructed from primary photon projections only. Unfortunately, all the MC 

solutions advanced to date for scatter subtraction require too much CPU time to compute to be 

clinically practical. For the 500-660 projections used in CBCT, the method proposed by 

Kyriakou et al would require 4 to 5.5 hours of CPU time57. Mainegra-Hing et al proposed a 

series of VR techniques to overcome the time limitation of MC scatter subtraction but were still 

unsuccessful in realizing acceptable CPU time intervals  on clinically available systems59. 

Instead of using VR techniques, a more recent approach to increase computation efficiency 

involves adaptation of the Monte Carlo approach for graphics processing units (GPU)60,61. 

Though significant gains from utilizing the GPU of have been reported for CBCT dose 

calculations62, efficiency gains for MC CBCT scatter projection using a GPU have not been 

published. 

1.4.3 Importance Sampling through Weight Windowing 

Instead of relying on brute force Monte Carlo, we take the approach of principled Variance 

Reduction. The following sub-Aims outline the background of a powerful technique to 

drastically reduce the amount of CPU time required for Monte Carlo computed CBCT scatter 

projections. 
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1.4.3.1 Importance sampling 

Importance sampling is a powerful MC VR tool. As previously shown, simulating MC particles 

can be fully described by a multi-dimensional phase space, β . For the description of importance 

sampling, we will let , )( , E rP   specify the phase space parameters of a particle leaving a 

collision. Importance sampling is a particle sampling procedure (a method of randomly selecting 

 , ii WP  from its preceding particle state i-1) in which systematically biased probability 

distributions are used to drive simulated particles into phase-space regions of greater importance 

to the problem solution. For example, in CBCT simulations employing purely analog sampling 

techniques, many low-energy photons are absorbed in the bow-tie filter or patient tissues and 

never strike the detector. These photons are of little importance because they do not contribute to 

the score at the detector. It would be more efficient instead to bias the simulation by making 

unimportant photon trajectories unlikely and focusing valuable CPU time on photons that do 

contribute to the detector score.  

1.4.3.2 Relationship between importance sampling and the weight windowing VR 

technique 

Systematic splitting/rouletting is an alternate implementation of importance sampling that avoids 

explicitly drawing random samples from biased PDFs63,64. A variant of the splitting/roulette 

technique is called weight windowing (WW) in which a photon’s weight in P is constrained to be 

within a certain interval or “window” centered about a desired target value. An illustration of 

WW is found in Figure 3 of the MCNP manual65. WW is especially useful when an additional 

VR technique causes particle weights to inflate or to become too variable, which can result in 

decreased efficiency. An example of such a phenomenon is the correlated Monte Carlo 

method33,66,67.  
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In general the process of picking the proper WW parameters can be a tedious task that requires 

skill and experience64. The adjoint function, *( , , )E r Ω , has long been recognized to have 

physical interpretation as the importance of a region in phase space P  and can be associated with 

a zero variance Monte Carlo solution68. The MCNP weight window generator produces a 

forward computed adjoint function as the expected contribution from particles in a region about 

P  to the detector score from itself and all its possible progeny69. Other methods use a 

deterministically computed *( , , )E r Ω  as the importance function. In the nuclear engineering 

field, use of *( , , )E r Ω  for importance sampling is called adjoint-biased, forward Monte Carlo 

(ABFMC) 70.  

1.5 Research Aims and Organization 

The use of patient specific Monte Carlo solutions for brachytherapy dose calculations and CBCT 

scatter projections can lead to improved patient outcomes. Accurate, individually-optimized 

brachytherapy treatments can increase local control while simultaneously reduce toxicities as a 

more accurate characterization of the dose-response relationship for both breast and prostate low-

energy PSB is obtained. Additionally, the use of an accurate and efficient scatter subtraction 

correction for CBCT projections coupled with a scatter noise mitigation strategy will improve 

CBCT image quality, providing more accurate diagnoses and the capability for quantitative 

imaging techniques such as more accurate contouring in radiotherapy. These clinical applications 

have been widely studied, but the barrier of Monte Carlo efficiency still remains.  

To address the problem of efficiency in patient-specific brachytherapy dose calculations, Chapter 

2 discusses the application of the CMC algorithm to the PTRAN code family48,71-75.  The 

accuracy and efficiency of the algorithm are presented relative to uncorrelated Monte Carlo for 
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two PSB patient geometries: a post-implant prostate evaluation and a simulated breast treatment. 

Chapter 3 is an extension to correlated Monte Carlo that introduces a method called interpolated 

correlated Monte Carlo (ICMC) as an approximation to further improve the efficiency of CMC 

calculations with little loss in accuracy. Similar to Chapter 2, the accuracy and efficiency of 

ICMC relative to uncorrelated Monte Carlo is presented. 

To address the lack of efficiency in computing CBCT scatter projections, Chapter 4 contains the 

application of WW and ABFMC to the PTRAN code family. Each method is presented, 

including theory and background, for different scatter geometries. 

Chapter 5 discusses the potential clinical benefit gained from application of the principles 

introduced in the previous chapters.  

This dissertation is designed to supplement 3 papers that have been written for publication. For 

the reader’s convenience, the published versions or current drafts of these appears are contained 

as Appendices A-C to supplement Chapters 2 and 4. Appendices A and B supplement Chapter 2, 

while Appendix C supplements Chapter 4. Additional Appendices D and E are given as 

supplementary material for Chapter 4. For readability, selected findings from each paper will be 

re-presented in its corresponding chapter while also inviting the reader to refer to the articles for 

more detail. 

For all calculations within this dissertation: the same compilation flags were used with the intel 

“ifort” compiler suite version 12, were completed on an AMD Phenom X6 1090T Black Edition 

processor, and utilized only a single CPU core (non-hyperthreaded). Furthermore, all CPU times 

included in this dissertation are only for the radiation transport and do not include the CPU time 
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to setup the simulation geometry, though it is a critical factor in the total clinical time. The 

reason for this decision is given in each research chapter’s discussion section. 
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2. Correlated Monte Carlo 

2.1 Introduction  

Model based dose calculation algorithms (MBDCA) for patient-specific dosimetry in low-energy 

brachytherapy have become increasingly utilized in recent years. Unfortunately, as referenced in 

Chapter 1, most MBDCA’s presented to date require considerable CPU time for full clinical 

utilization. Correlated sampling, or correlated Monte Carlo (CMC), is well suited to increase the 

efficiency of Monte Carlo (MC) brachytherapy dose calculations.  

2.2 Correlated Monte Carlo 

Since the theory of CMC has been extensively described previously67, only a brief description 

will be included here. A similar explanation is given in Section II.A of Appendix B. CMC 

deviates from traditional uncorrelated Monte Carlo (UMC) by aiming to compute the dose 

difference between heterogeneous and homogeneous geometries, as opposed to absorbed dose in 

either geometry separately. Conceptually, deviations from a homogeneous water environment 

(including applicators, seeds, and tissue heterogeneities) are treated as perturbations.  

First, a phase space vector, for the mth history and nth interaction,  h m
,

o
m nβ , is randomly sampled 

from a probability density function (PDF) that corresponds to a purely homogeneous geometry. 

h m
,

o
m nβ  is defined as, 

 , , ,
hom hom

, ,( , , , )m n m n m n m n m nE Wβ r Ω   (2.2.1) 
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where rm,n  describes the location of the interaction, Em,n is the photon’s energy as it exits rm,n, 

,m nΩ  describes the photon trajectory leaving rm,n, and h m
,
o

m nW  represents the photon weight as it 

exits rm,n. Second, another phase space vector, * h t
,

e
m nβ , representing a point in phase space 

randomly selected from the unbiased probability distribution function (PDF) corresponding to 

the heterogeneous geometry, is generated using the same components of h m
,

o
m nβ with an additional 

correction factor on h m
,
o

m nW  reflecting the presence of heterogeneities. Under this description, 

* h t
,

e
m nβ  is defined as: 

  * het het
, , , , ,( , , , )m n m n m n m n m nE Wβ r Ω  (2.2.2) 

The h t
,
e

m nW  quantity is the product between h m
,
o

m nW and the ratio between the unbiased and biased 

PDF’s for sampling points in phase space, 

  
hom hom

het 0het hom
ho

,0 ,
, ,

0
m hom

m ,ho ,0

( ,

( )

),

, ,
m n

m n m n
m n

P
WW

P







β β

β β
 (2.2.3) 

where hom hom hom hom
0,0 , 0,0 ,( , , ) represents the probability of  selecting  , ,  in   geometry.m n m nP  β β β β  This 

weight correction factor removes the obvious bias arising from scoring heterogeneous dose using 

histories sampled from PDF’s corresponding to a homogeneous medium. Calculation of h t
,
e

m nW  is 

facilitated by assuming a free electron scattering model that neglects characteristic x-ray 

emission and coherent scattering. Complete electron absorption following photoelectric 

interactions and Klein-Nishina scattering is also assumed.  These two previous approximations 

have been shown to be accurate for low-energy brachytherapy dosimetry76.  Because 

* het hom
, , and  m n m nβ β

 
use the same sequence of collisions to score dose, their respective dose tallies are 
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frequently tightly correlated. In practice, this correlation is exploited by scoring the dose 

difference, 

 c het * het het hom
, , , ,( ) ( )ijk m n ijk m n ijk m nd f f  β β                                     (2.2.4) 

In this expression, ijk refers to a specific scoring voxel, f represents the scoring estimator, and 

c
, ,ijk m nd represents the CMC dose difference. The m and n subscripts denote the mth history and 

nth interaction. The final sample mean, signified by an over-line, is computed by summing 

together each random sample, c
, ,ijk m nd  over the interactions and averaging over the histories, 

  
c c

, ,
1 1

1 mMN

ijk ijk m n
m n

D d
N  

    (2.2.5) 

The CMC estimate of the true het
ijkD , (the expectation value of heterogeneous geometry sample 

mean over all possible sets of histories) is given by, 

 
c c c chet,c hom hom TG43  where,  1 1 / /ijk ijkijk ijkijk ijk ijkijkD HD CF HCF D D D D             (2.2.6) 

In this expression, HCF stands for the heterogeneity correction factor and 
c
ijkHCF  is an unbiased 

estimate of its true value, het hom/ijk ijk ijkH DC DF  . het
ijkD

 
represents the computed heterogeneous dose 

using traditional, uncorrelated MC (UMC) methodology and is also an unbiased estimate of het
ijkD . 

In practice, exact hom
ijkD  computation requires additional Monte Carlo resources and would 

contribute to an overall loss in efficiency compared to UMC methods.  Fortunately, hom
ijkD can be 

well approximated using fast deterministic methods such as the TG-43 methodology3, 

hom TG43
ijk ijkD D as illustrated in eq. (2.2.6). Since TG43

ijkD can be known with negligible statistical 

uncertainty, the only uncertainty in eq. (2.2.6) is due to 
c
ijkD . For tightly correlated  

* het hom and  n nβ β  pairs, it can be shown67 that for the variance, V,  

      chet,c het
ijkijk ijkV V VD D D              (2.2.7) 



www.manaraa.com

 
 

3 
 

However, a positive covariance cannot be guaranteed67,77 thus implying that efficiency could 

decrease in regions where local cross-sections and absorption properties deviate substantially 

from liquid water. 

2.3 PTRAN Implementation 

The correlated sampling technique described above, was implemented as an option within the 

more general MBDCA MC code family, PTRAN33,48,67,71-75,78. An extensive review of the 

capabilities of PTRAN can be found in Section II.B of Appendix B. Notably, in addition to 

PTRAN’s capability to model various volume sources, a general brachytherapy phase-space 

source model was also implemented, and used for all PTRAN calculations completed for this 

study. More about the phase space source model can be read in Section 2.6.2.  

Although correlated Monte Carlo had previously been implemented within PTRAN for both 

analytic and CT-based geometries by Drs. Williamson and Yi Le [Hedtjarn 2000 and Yi 

Abstract], they lacked robustness and generality for general brachytherapy applications. For this 

reason, I completely restructured the CMC code allowing general use for all source types within 

any combination of analytic and CT geometries and ensuring consolidating the multiple PTRAN 

libraries into a single library that supports all members of the PTRAN family.  

2.4 Case Studies 

Two brachytherapy patient cases were utilized to compare CMC relative to UMC for accuracy 

and efficiency.  A detailed description is given in Appendix B section II.C, but each case is given 

a brief description here: 

1. A post-implant CT of a permanent seed brachytherapy (PSB) prostate cancer patient 

with an 82 mL gland was implanted with 78 Model-6711 125I seeds with air-kerma 
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strengths 0.636 U/seed( 2Gy·m / h1 U 1  ) and a prescribed D100 of 145 Gy. Using a 

ramp function, utilized by our clinic, a modified version of CTCREATE (ctcreate input 

file included as Appendix F), taken from the DOSXYZnrc79 code family, and was used 

to assign each voxel of a single-energy CT to one of 55 different voxel-specific tissue 

compositions and density assignments. Assignment was made based on each voxel’s 

Hounsfield unit (HU) intensity. Three difference voxel grid sizes were studied: 

31 1 1 m m  , 32 2 2 m m  , and 31 3 3 m m  .  

2. A segmented breast CT image set, acquired on a breast-dedicated cone-beam CT 

imaging system36,44,80, was used to create a simulated 103Pd PSB post-lumpectomy 

implant. Following recommendations given by Pignol et al81 a commercial treatment 

planning system1 was used to generate an implant consisting of 87 Model 200 seeds with 

air-kerma strengths of 1.590 U. The implant was designed to deliver a prescribed D100 

dose of 90 Gy to the CTV. The 44.6 mL CTV was defined to be a 1 cm expansion of a 

simulated spherical lumpectomy cavity with diameter of 2.4 cm. To minimize de-

correlation between the homogeneous and heterogeneous geometry photon histories, an 

average breast composition11 consisting of 85% adipose and 15% fibro-glandular tissue 

was used to compute hom
ijkD . This change to the homD  media increased the correlation 

between the homogeneous and heterogeneous photon histories and its effect on 

efficiency will be explored later in Section 2.6.1. Only one voxel grid was investigated: 

30.67 0.67 0.67 mm  . 

                                                 
1 Varian VeriSeed 8.0 
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2.5 Accuracy of Correlated Monte Carlo 

Accuracy of het,c
ijkD relative to het

ijkD  was quantitatively evaluated using a method taken from 

Kawrakow et al82. The distribution of dose differences at each voxel ijk receiving more than 50% 

of the prescribed dose was evaluated and expressed as multiples of the combined statistical 

uncertainty,  

   het ,c het

het ,c het 2 2

ijkijk
ijk ijk ijk D D

z D D     (2.5.1) 

The quantity ijkz  is defined as the difference between het,c
ijkD  and het

ijkD  expressed in multiples of 

standard deviations about the mean. In the absence of any systematic error or bias, the 

distribution of ijkz would exhibit Gaussian form with a mean of zero and standard deviation of 1, 

 
2 /21

( )
2

zf z e


   (2.5.2) 

To separate the random and systematic components of the CMC error, the ijkz frequency 

histogram was fit to a function proposed by Kawrakow et al82, 

  

  
2 2

21 2( ) ( )

2 2 2
1 2 1 2

1
( ) 1

2

z z z

f z e e e

 

   


            
   

 
     
 
 

  (2.5.3) 

Eq. (2.5.3) can account for two normally distributed systematic errors, represented by the first 

two terms, with mean i  with probability of occurrence, i , where i=1,2. The remaining errors 

are purely statistical and represented by the final term.   

Our investigation of CMC accuracy relative to UMC, using an unbiased MC solution for hom
ijkD , 

is well documented in Appendix B, section III. Figure 2.1 is taken from Appendix B and displays 
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the frequency histograms of ijkz for both prostate and breast with their corresponding fits to 

eq. (2.5.3). The best fit parameters with corresponding error interpretations are listed in 

Appendix B, Table II. Our analysis of CMC accuracy shows that CMC accurately reproduces 

UMC results with negligible systematic discrepancies. The largest difference was a 0.5% 

overestimation in less than 0.1% of the prostate voxels. 

Figure 2.1: Frequency histogram of ijkz (dots) for (a) prostate and (b) breast with their corresponding fits to ( )f z . 

2.6 Correlated Monte Carlo Efficiency 

The efficiency of a Monte Carlo radiation transport calculation is often referred to as the “figure 

of merit” (FOM). It is defined as the inverse of the product between the final variance of the MC 

solution, 2 , and the CPU time, t, 

 
2

1

·
M

t
FO


   (2.6.1) 

The efficiency gain for a voxel ijk, ijkG , is simply the ratio of FOM’s for the two simulations 

being compared, 

 
CMC

UMC

ijk
ijk

ijk

FOM

FOM
G    (2.6.2) 
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Using eq. (2.6.2), ijkG  was computed for every ijk voxel for various anatomical regions within 

each patient case. For the breast case, the average ijkG value was computed for the simulated 

lumpectomy cavity, and the CTV. Similarly, for the prostate case, the average ijkG value was 

computed for the prostate (CTV), bladder, rectum, seminal vesicles, and urethra. For each 

anatomical region, the CPU time required to reach an average 2% statistical uncertainty about 

the mean was computed, as well, for both UMC and CMC methods. Additionally for both patient 

cases, the average value for ijkG was also computed for the region that receives 50% of the 

prescribed dose.  

Table IV in Appendix B reports substantial increases in the efficiency of Monte Carlo 

calculations for the prostate and breast geometries investigated. Most notably, of the regions that 

receive more than 50% of the prescribed dose, greater than 99.7% of the voxels for all prostate 

voxel grids enjoys a more than 25 fold increase in efficiency. For the breast, 100% of the voxels 

receiving more than 50% of the prescribed dose experience an average 55-fold efficiency gain 

relative to UMC.  
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Figure 2.2 shows the dependence of the efficiency gain on HCF and dose delivered. This figure 

shows that efficiency losses are localized to areas of lower dose, specifically, lower than 50% of 

the D90. Additionally, for the prostate case, the losses were pronounced in regions where the 

HCF is less than unity. The breast geometry did not show this behavior, due to the decreased 

HCF range resulting from choosing average breast medium to estimate hom
ijkD . 

 

Table 2-I lists the average efficiency gains for the various anatomical regions listed above for 

both prostate and breast, demonstrating substantial gains over the already-optimized PTRAN 

UMC simulations.  

Table 2-I also lists the time required for UMC and CMC to achieve and average 2% standard 

deviation about the mean. All times reported are for radiation transport, and not the time required 

to read in and set up the simulation geometry. CMC requires single-processor CPU times of only 

38.6 sec, 3.3 sec, and 1.1 sec to achieve an average 2% standard deviation within the prostate 

using 31 1 1 mm  , 32 2 2 mm  , and 33 3 3 mm   voxels, respectively. For the breast, only 

21.1 sec is needed to achieve the average 2% standard deviation within the simulated CTV 

compared to 19 min for UMC. CMC increases efficiency for the breast implant on average by 59 

fold with practically 100% of the voxels enjoying an efficiency gain. Similarly, 100% of the 

voxels within the prostate CTV experienced an improvement of more than 37 times over UMC 

for all three voxel sizes. 
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Figure 2.3: Scatter plot of percent standard deviation about the mean vs. dose for each individual voxel within the (a) prostate and 
(b) breast CTV for correlated (lower) and uncorrelated Monte Carlo (upper). The average percent standard deviation about the 
mean value for correlated Monte Carlo is plotted as a green line. Run-times were 39 sec and 21 sec for prostate and breast, 
respectively. 

Figure 2.3 presents a scatter plot of the percent standard deviation about the mean vs. dose for 

each individual voxel within the prostate and breast following CPU run-times of 39 sec and 

21 sec, respectively. Even though some voxels experience an efficiency loss, these voxels 

generally have a CMC uncertainty well below the average UMC uncertainty, showing CMC is 

globally advantageous despite the few voxels that exhibit increased statistical uncertainty.   In 

other words, in all cases investigated to date, CMC always reduces maximum uncertainty in 3D 

arrays of voxel detectors. 

2.6.1 Choice of Homogeneous medium for Breast Implants 

Our CMC simulation for breast PSB used an average breast tissue in place of the homogeneous 

water medium to compute an estimate to hom
ijkD . As shown in eq. (2.2.7), the variance of het,c

ijkD is 

substantially less than that of het
ijkD , but only in circumstances that maintain positive correlation 

between * het hom
, , and  m n m nβ β  scores. Because * het

,m nβ  uses the same phase-space components as hom
,m nβ , 

the only differences between them are their respective particle weight values. From eq. (2.2.3), 
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itself can be a powerful variance reduction technique (source biasing) when the geometry 

upstream of the threshold remains constant for various simulation environments. The phase 

space source model allows for the inclusion of atomic relaxation, characteristic x-ray emission, 

and electron binding for interactions occurring within the source. None of these effects are 

modeled in correlated sampling due to the weight correction factor found in eq. (2.2.3). Many 

brachytherapy seed designs incorporate high Z materials, as radio-opaque markers, that add 

significant number of characteristic x-rays to the fluence exiting the seed encapsulation. Since 

the phase-space source incorporates the full physics model, CMC utilizing a phase-space source 

can accurately reproduce UMC dose maps, as shown by Figure 2.1. As a side note, when 

employing a phase-space source, the user must ensure the file read time is not a detriment to the 

potential efficiency gains desired. 

Use of the phase-space source model also increases the correlation between * het hom
, , and  m n m nβ β , thus 

increasing the CMC efficiency. Since the phase-space model includes self-attenuation of the 

source for computation of the homogeneous dose distribution, the difference between the 

homogeneous and heterogeneous dose is reduced. This reduction increases the likelihood that a 

single heterogeneity found in the geometry can be treated as a perturbation. Figure 1 in Appendix 

A illustrates this principle, shown in the decreased values of the HCF for the prostate relative to 

those found in Figure 2.2(a).  

2.6.3 Programming Memory Management 

Tables 1 and 2 and Tables III and IV in Appendices A and B, respectively contain the same 

efficiency metrics, but report different values. In fact, the values reported in Appendix B are 

improved by a factor of 5 over those in Appendix A. This raises the following question: If they 
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report the same efficiency metrics, then why are they so different? To answer this question it is 

necessary to highlight the differences between the two simulations that produced the data: (1) 

Appendix B used more modern computer resources, and (2) a major modification to memory 

management was made for the simulations in Appendix B. The first difference has no bearing in 

the improvement of the efficiency gains reported in either study because the gains were relative 

to non-correlated simulations on the same computer architecture.  

All Monte Carlo algorithms are statistical in nature and have a measure of uncertainty associated 

with the final estimated value. In 2001, Sempau et al83 introduced a very fast and simple method 

to compute this uncertainty for radiation transport applications. With the aim of computing the 

homogeneous or heterogeneous dose, this method requires the storage and accessibility of five 

large arrays that are indexed to match the voxel grid: mean dose to voxel per history (for both 

primary and scatter separately), mean squared dose to voxel per history (for both primary and 

scatter separately), and the history index of the last photon that contributed to the voxel of 

interest. In the case of CMC, where the heterogeneous dose, homogeneous dose, and their 

difference are all tracked, fifteen 3-D arrays are required. Up to nine of these arrays are accessed 

each time a collision is scored. When utilizing 3-D grid optimized scoring routines, such as the 

expected track-length estimator74, then each array is accessed for multiple voxels every scoring 

event. 

FORTRAN assigns memory addresses according to what is called “column major.” This means 

that for a 2-D array, successive elements in memory follow the column. For example, given an 

array,  , of size  3 3 , column order means that consecutive memory addresses are given the 

following values in the following order: 
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  (1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (1,3), (2,3), (3,3)          

  

If there is a third dimension, then that index would change next. Since fifteen 3-D arrays must be 

accessed consecutively for the same 3-D indices, ijk, there was a considerable amount of 

computational overhead spent jumping between widely separated memory locations.  

To resolve this issue, I rewrote how the CMC uncertainty arrays were mapped into memory. 

Instead of being 3-D arrays, they became 1-D arrays with the following mapping from the 3-D 

ijk indices to a single 1-dimensional index, 

 1-Dindex ( 1) ( 1)z y xn n k n j i       (2.6.3) 

where nx, ny, and nz represents the number is voxels in the x, y and z dimensions. All fifteen 1-D 

arrays were then joined together to form one large 2-D array with dimensions of  15 x y zn n n   . 

For each scoring event, the updated values for each voxel index in the array are now adjacent to 

one another in memory because the columns now index array identity and have consecutive 

memory locations. Following this change, the 5-fold increase in efficiency from the data 

presented in Appendix A to Appendix B was realized.  

Without this change, we would have erroneously concluded that CMC only modestly improved 

efficiency. When programming variance reduction strategies or other algorithms intended to 

increase the efficiency, it is imperative that memory management be optimized as well, so that 

increases in memory access time do not overshadow efficiency gains. 

2.7 Discussion 

Under many circumstances, CMC reduces the MC variance relative to UMC calculations. 

However, regions with low dose or large dose differences between hom
ijkD  and het

ijkD  due to tissue 
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heterogeneities can experience diminished gains or even efficiency losses. Specifically, 

diminished gains were evident in Figure 2.4(b) caused by inter-seed attenuation effects due to the 

lead marker enclosed within the seed. On the other hand, both cases investigated by our study 

demonstrated reduction of the maximum and mean dose-uncertainty in anatomical regions of 

clinical relevance. We have shown that CMC is globally advantageous notwithstanding the small 

number of voxels that exhibit increased statistical uncertainty relative to UMC.  

In comparison with other optimized codes, Yegin et al84 reported full prostate dose calculations 

with 5 min run-times using BrachyDose, based on EGSnrc85. In addition, Thomson et al86 

reported 30 sec run-times using BrachyDose for 2×2×2 mm3 voxels. Chibani et al6 similarly 

reported run times in under 1 min for a 2×2×2 mm3 voxel mesh. In contrast, PTRAN_CT CMC 

computes dose under these same conditions in 3.3 sec.  

Fast dose-computation execution is not the only barrier to clinical acceptance of model based 

dose calculation algorithms. For low-energy brachytherapy, the task of correctly assigning tissue 

cross sections to organs or individual voxels is an important unsolved problem87-89. Potentially, 

this issue could be addressed through quantitative imaging techniques such as dual-energy 

CT88,90-92.  

2.8 Conclusion 

Correlated Monte Carlo (CMC) was implemented and was shown to be a powerful and accurate 

tool for the post-implant analysis/treatment planning of permanent seed brachytherapy. CMC can 

be used confidently and efficiently, able to provide accurate dose maps in seconds, for patient-

specific dose calculations. Barriers to full implementation include a user-friendly interface and 

accurate characterization of patient tissues for low keV applications. 
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3. Interpolated Correlated Monte Carlo 

3.1 Introduction 

The previous chapter introduced the correlated Monte Carlo (CMC) method for increasing the 

efficiency of brachytherapy dose calculations as a step towards implementing patient-specific 

model based dose calculation algorithms (MBDCA’s) in the clinical setting. CMC provided an 

efficiency increase of over 30 to 40 fold relative to optimized un-correlated Monte Carlo (UMC) 

allowing single, high-resolution, dose distributions to be computed in under a minute. While 

CMC provides a reasonable framework for post-implant dosimetry, an additional increase in 

efficiency would be useful in applications that require multiple dose maps to be computed 

iteratively. For example, treatment planning optimization requires hundreds of dose maps to be 

computed for convergence93-97. If CMC were applied in conjunction with a genetic algorithm, 

like the one proposed by Lee et al93, with 1000 iterations for a 31 1 1 mm   voxel volume, then 

11 hrs are required for the Monte Carlo (MC) calculations alone. Additional improvement in 

efficiency of these calculations is therefore needed for clinical application. This chapter focuses 

on a method used in conjunction with CMC that takes advantage of a fundamental difference 

between CMC and uncorrelated, standard Monte Carlo (UMC). We call this method interpolated 

correlated Monte Carlo (ICMC). 

3.2 Interpolated Correlated Monte Carlo 

Typically, a small voxel volume of 31 1 1 mm   or lower is desirable in brachytherapy to reduce 

volume averaging errors. Unfortunately, smaller voxels require more computation time since MC 

efficiency scales linearly with voxel volume. The voxel averaging error arises from averaging 
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over the high brachytherapy dose gradients from inverse square law effects. The inverse square 

law could be substantially restrained by subtracting hom
ijkD  from het

ijkD , potentially leaving 
CMC
ijkD

free from high gradients. This suggests that a high resolution approximation to het
ijkD  could be 

recovered by interpolating a low resolution (LR) 
CMC
ijkD  to a high resolution (HR) grid, followed 

by summation with a HR solution to hom
ijkD . We hypothesize that interpolation and partial volume 

errors in this composite solution are much lower than interpolating a LR het
ijkD  to a HR grid. To 

test this hypothesis, we introduce the Interpolated Correlated Monte Carlo (ICMC) technique for 

computing high resolution (HR) dose maps from low resolution 
CMC
ijkD  Monte Carlo 

calculations. To clarify, we hypothesize that ICMC can compute brachytherapy dose maps with 

accuracy comparable to HR-UMC in the same amount of time as a LR-CMC solution. 

This process is described by Figure 3.1. First, a fast deterministic HR approximation to hom
ijkD , 

TG43
,HRijkD , is computed using the TG-43 protocol. Simultaneously, CMC is used to compute 

CMC
,LRijkD  on a LR voxel grid which is then interpolated onto the HR grid, yielding ICMC

,HRijkD .  

Finally, the ICMC
,HRijkD  and TG43

,HRijkD  arrays are added together voxel-by-voxel, yielding ICMC
,HRijkD , 

which approximates the true value of het
ijkD  as computed directly on the HR grid. 
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A segmented breast CT image set, acquired on a breast-dedicated cone-beam CT imaging 

system36,44,80, was used to create a simulated 103Pd permanent seed brachytherapy (PSB) post-

lumpectomy breast implant following the PSB partial breast irradiation recommendations given 

by Pignol et al81. Using a commercial treatment planning system2 the 44.6 mL  CTV was defined 

to be a 1 cm expansion of a simulated spherical lumpectomy cavity with diameter of 2.4 cm. An 

implant consisting of 87 Model 200 seeds with air-kerma strengths of 1.590 U was designed to 

deliver a prescribed D100 dose of 90 Gy to the CTV. Because of the high fraction of adipose 

tissue in the breast, rather than using liquid water for the computation of homD  via the TG-43 

method, a homogeneous average breast composition11 medium consisting of 85% adipose and 

15% fibroglandular tissue was used to reduce the range of HCF values. This change to the homD  

media increased the correlation between the homogeneous and heterogeneous photon histories as 

explained in Chapter 2. 

The post-implant prostate CT used for the custom ramp prostate was mapped to 4 different ICRU 

tissues using the example, default material ramp in CTCREATE: air, lung, muscle, and bone. For 

the “default ramp prostate,” the prostate CTV was further segmented into simulated transitional, 

central and peripheral zones given media assignments picked from a muscle-like media list 

utilized by our clinic. Tissue compositions are listed in Table 3-I.  

                                                 
2 Varian VeriSeed 8.0 
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Table 3-I: Tissue compositions for default ramp prostate geometry. Values are presented as percentage weight. 

Region  Tissue Elemental Composition 
peripheral  H: 10.8%; C: 36.6%; N: 2.1%; O: 

49.9%; Na: 0.1%; P: 0.15%; S: 0.18%; 
Cl: 0.1%; K: 0.15% 

transitional  H: 10.0%; C: 31.5%; N: 2.4%; O: 
54.7%; Na: 0.1%; P: 0.20%; S: 0.20%; 
Cl: 0.1%; K: 0.20% 

central  H: 10.9%; C: 41.6%; N: 1.9%; O: 
45.1%; Na: 0.1%; P: 0.10%; S: 0.15%; 
Cl: 0.1%; K: 0.10% 

 

All UMC Simulations were performed on a HR 31 1 1 mm   (1 mm) voxel grid while IMC and 

ICMC calculations were initially executed on the LR 32 2 2 mm   and 33 3 3 mm   (2 mm and 

3 mm respectively) voxel grids before interpolation. Additionally, the interaction cross-sections 

and mass-energy absorption coefficients for the LR voxels were assigned average values over the 

corresponding HR voxel volume. 

3.4 Efficiency 

The main benefit from ICMC is the efficiency gain granted by computing the Monte Carlo 

contribution to ICMC
,HRijkD . for voxels with larger volumes. As stated in the previous chapter, the 

efficiency of a Monte Carlo radiation transport calculation is often referred to as the “figure of 

merit” (FOM). It is defined as the inverse of the product between the variance, 2 , and the 

corresponding CPU time, t: 

 2

1
FOM

t



  (3.4.1) 

The efficiency gain of ICMC relative to UMC at voxel ijk is simply the ratio of FOM’s : 

 
ICMC

UMC

ijk
ijk

ijk

FOM
G

FOM
   (3.4.2) 
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Table 3-II tabulates the average value for ijkG  achieved through the various methods discussed: 

IMC, CMC, ICMC along with the expected CPU time required for the CTV to reach an average 

2% standard deviation about the mean. The IMC and ICMC efficiencies are specified relative to 

the corresponding 1 mm voxel UMC simulation while the average CMC efficiency gain is 

specifically relative to the UMC calculation on the same grid size. Note that the CPU times for 

ICMC and CMC on the 2.0 mm and 3.0 mm voxels are the same due to their using the same 

calculation for each method. In other words, the 2.0 mm and 3.0 mm CMC calculations are 

compared against a UMC 2.0 mm and 3.0 mm solution respectively. ICMC results, on the other 

hand, are compared to a 1.0 mm UMC solution because, ICMC estimates dose on the HR, 

1.0 mm grid, even though the Monte Carlo simulation is performed on LR voxels.  

Table 3-II not only highlights the strength of the CMC variance reduction technique, showing 

37-68 fold increases in efficiency on the HR grid, but also shows the additional power of ICMC 

relative to UMC calculations. Both the prostate and breast showed efficiency increases up to 

three orders of magnitude relative to UMC, suggesting CPU times of 1 sec or below to reach an 

average 2% standard deviation about the mean for the CTV volumes. Specifically, the breast 

2 mm and 3 mm showed gains of 452 and 1507 fold respectively for HR 1 mm voxels. For the 

3 mm ICMC calculation, this corresponds to an anticipated run time of 0.39 sec to reach an 

average 2% uncertainty in the 1 mm CTV voxels. Furthermore, the prostate shows efficiency 

gains of 523 and 1460 for the 2 mm and 3 mm grid respectively with corresponding run times of 

3.3 and 1.1 sec. These times represent significant improvements over previously published 

methods. The clinical impact of these results is discussed in Section 3.6. 
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Table 3-II: Average efficiency gain for the breast and prostate cases with the estimated time required to compute Monte Carlo 
dose to achieve 2% standard deviation about the mean (for IMC and CMC this is for 1 mm voxels). All gains are relative to un-
correlated Monte Carlo. The CMC gains reported are relative to a UMC simulation using the same voxel size. The ICMC and 
IMC gains are relative to the corresponding (1.0 mm)3 voxelUMC simulations, whereas CMC gains are relative to UMC for same 
voxel size. 

 MC Type Time to achieve mean %SDM of 2% Average Efficinecy Gain 
Breast  1.0 mm 2.0 mm 3.0 mm 1.0 mm 2.0 mm 3.0 mm
CTV UMC 9.8 min 1.0 min 23.7 s N/A N/A N/A 
 IMC N/A 1.0 min 23.7 s N/A 9.8 24.8 
 CMC 9.8 s 1.3 s 0.39 s 68.0 55.5 66.1 
 ICMC N/A 1.3 s 0.39 s N/A 452 1507 
Prostate        
CTV UMC 15.3 min 1.6 min 30.9 s N/A N/A N/A 
 IMC N/A 1.6 min 30.9 s N/A 9.6 29.7 
 CMC 38.6 s 3.3 s 1.1 s 37.1 44.7 41.6 
 ICMC N/A 3.3 s 1.1 s N/A 523 1460 

 

3.5 ICMC Accuracy 

To quantify the errors associated with the ICMC approximation relative to HR  UMC, the 

individual voxel error, 
ICMC

,HR

het
1 100ijk

ijk

D

D

 
   

 
, and differences in the D90 and V200 DVH metric were 

evaluated.  A significant effort was made to separately quantify three sources of error associated 

with the ICMC methodology: the inverse square law gradient effect (ISGE), cross-section 

gradient effect (CSGE), and the local absorption gradient effect (LAGE). 

3.5.1 ICMC Total Error 

Before I present each individual error source, the total ICMC error and its effect on the dose 

distribution and the DVH metrics relative to the UMC 1 mm voxel case are evaluated. Figure 3.2 

shows the total percentage error distribution for the ICMC and IMC methods, and Table 3-III 

contains the corresponding quantitative metrics. The metrics contained in Table 3-III were 

computed by converting the distribution of errors to a cumulative probability density function. 

Figure 3.2 and Table 3-III do not clearly demonstrate a general improvement with accuracy from 

ICMC relative to IMC for all three geometries. The only case with substantial improvement in 



www.manaraa.com

 
 

25 
 

accuracy is in the breast case where the mean error and standard deviation were reduced to .01% 

and by 3 fold, respectively, for both LR grids. On the other hand, improvement for both prostate 

cases was marginal. 

Table 3-IV contains the comparisons for the DVH metrics D90 and V200 for all three geometries. 

Viewing the ICMC error in terms of DVH metrics instead of voxel-to-voxel ratios, as in Figure 

3.2, the accuracy advantage of ICMC over IMC becomes apparent. Compared to IMC, ICMC 

increases D90 accuracy twofold to within 2% of the HR-UMC value for both LR grids while a 

four-fold accuracy increase is observed for the V200 where the inverse square law has greatest 

effect on the dose distribution. To highlight this, Figure 3.3(a) shows an overlay of the isodose 

curves for both the UMC and 3.0 mm ICMC. All three cases show barely distinguishable 

features between the UMC and ICMC calculations with a few localized isodose curve 

displacements of 2-3 mm or less. 

Table 3-III: Quantitative metrics describing the total percent error distributions for the ICMC and IMC simulation relative to the 
corresponding UMC calculations. MPV stands for most probable value. 

Custom Ramp Prostate  Mean Std. Deviation 20th Percentile 80th Percentile MPV 
IMC (2.0 mm)  0.43 11.7 -5.78 8.98 -0.03 
IMC (3.0 mm)  0.79 14.01 -6.13 10.33 1.48 
ICMC (2.0 mm)  -0.86 10.96 -6.98 7.18 0.88 
ICMC (3.0 mm)  -1.37 12.69 -8.08 7.83 4.73 
Breast        
IMC (2.0 mm)  2.08 6.60 -0.28 5.43 1.58 
IMC (3.0 mm)  2.83 10.34 -0.68 8.53 4.33 
ICMC (2.0 mm)  0.01 2.88 -1.88 2.03 -0.18 
ICMC (3.0 mm)  0.01 3.38 -2.48 2.58 -0.28 
Default Ramp Prostate       
IMC (2.0 mm)  -0.48 9.31 -1.18 3.43 0.48 
IMC (3.0 mm)  1.18 10.8 -1.18 5.13 0.38 
ICMC (2.0 mm)  -0.69 8.55 -2.03 1.43 0.38 
ICMC (3.0 mm)  -0.79 9.38 -2.58 1.58 -0.48 

  



www.manaraa.com

 
 

26 
 

 
Figure 3.2: Frequency histogram of voxel-by-voxel relative percent total errors relative to UMC 1 mm voxel simulation  from 
IMC (dashed)  and  ICMC (dashed-diamond) relative to regular HR MC. The prostate custom ramp, breast, and prostate default 
ramp cases are shown in (a), (b), and (c), respectively.  Red and blue lines denote the error distributions for 2 mm and 3 mm 
IMC/ICMC, respectively. 

Table 3-IV: DVH metrics for ICMC, IMC, and UMC for all three cases studied. 

Custom Ramp Prostate D90 (Gy) D90 Error (%) D90 Error (Gy) V200 (cc) V200 Error (%) V200 Error (cc) 
HR MC 100.6 N/A N/A 8.29 N/A N/A 
IMC 2.0 mm  2.58 2.66  15.61 1.53 
IMC 3.0 mm  3.26 3.39  18.01 1.82 
ICMC 2.0 mm  1.65 1.69  -3.70 -0.30
ICMC 3.0 mm  1.42 1.45  -4.61 -0.37 
Breast       
HR MC 86.0 N/A N/A 2.35 N/A N/A 
IMC 2.0 mm  2.55 2.25  3.08 0.075 
IMC 3.0 mm  4.02 3.60  -74.60 -1.01 
ICMC 2.0 mm  0.69 0.60  -0.28 -6.69x10-3

ICMC 3.0 mm  0.69 0.60  -0.057 -1.34x10-3

Default Ramp Prostate       
HR MC 96.0 N/A N/A 5.95 N/A N/A 
IMC 2.0 mm  3.41 3.39  18.68 1.37 
IMC 3.0 mm  4.34 4.35  15.95 1.13 
ICMC 2.0 mm  2.46 2.42  -2.75 -0.16
ICMC 3.0 mm  2.46 2.42  -1.48 -0.087 

  

(b) (a) 

(c) 
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Figure 3.3: Isodose contours for ICMC (solid lines) overlaid on the corresponding UMC isodoses (dashed dot lines) The 
correlated sampling part of the ICMC calculation was performed on a 3.0 mm voxel size. The custom-ramp prostate, breast, and 
default ramp prostate cases are shown in (a), (b), and (c), respectively. 

  

(c) 

(b) (a) 
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3.5.2 Inverse Square Law Gradient Effect  

ISGE error is a combination of two separate effects: voxel averaging from scoring 
CMC
ijkD  over a 

larger voxel volume and error from linearly interpolating 
CMC

,LRijkD  to 
ICMC

,HRijkD . To quantitatively 

evaluate ISGE, a series of UMC and ICMC simulations were completed in homogeneous non-

water media. This removes any error associated with voxel-to-voxel variations in cross-sections 

and local absorption properties while the non-water media result in a 
CMC
ijkD that differs 

significantly from zero. Simulations were completed using adipose and adult muscle tissues for 

the prostate case and adipose and glandular tissues for the breast case.  

Figure 3.4 shows the percent error distributions and Table 3-V contains corresponding 

quantitative metrics for the prostate adipose and muscle ISGE simulations. Table 3-VI presents 

the DVH metric comparison. From this data, the following observations can be made: 

1. All IMC simulations over-estimate het
ijkD . This result is expected because of the effects 

from averaging the high dose gradients, with positive concavity, over a larger volume and 

then interpolating to regain the high resolution map. This process will naturally yield a 

general over-estimation of dose. 

2. As expected, in all circumstances, ISGE error is less for the 2 mm LR grid than the 3 mm 

LR grid. 

3. There are fewer ISGE errors for the muscle tissue than there are for the adipose tissue: 

less than 0.5% for both 2 mm and 3 mm grids. This is because muscle has radiological 

properties closer to water than adipose tissue with a linear attenuation coefficient   only 

4% higher than water at 28 keV, whereas the same quantity for adipose tissue is 30% 

lower than water.  
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Figure 3.4: ISGE percent error distributions for the prostate (a) adipose and (b) muscle tissues. Both the IMC and ICMC errors 

relative to UMC are shown for voxels with greater than 50% of 90D . 

 

Table 3-V: Prostate case ISGE percent error distribution metrics relative to UMC 1 mm for the uniform adipose and muscle 

tissue assignments.  Only voxels with doses greater than 50% of 90D were included. 

Adipose  Mean Std. Deviation 20th Percentile 80th Percentile MPV
IMC (2.0 mm)  1.95 4.24 0.85 2.63 1.25 
IMC (3.0 mm)  2.67 6.57 0.85 3.51 1.45 
ICMC (2.0 mm)  -0.76 2.30 -1.05 -0.23 -0.39 
ICMC 3.0 mm)  -1.42 3.51 -1.79 -0.23 -0.59 
Muscle       
IMC (2.0 mm)  1.92 4.39 0.85 2.18 1.15 
IMC (3.0 mm)  2.90 6.62 0.90 2.80 1.88 
ICMC (2.0 mm)  0.05 0.12 0.03 0.09 0.05 
ICMC (3.0 mm)  0.09 0.18 0.03 0.16 0.06 

  

Table 3-VI: DVH Metrics for the ISGE prostate geometries with adipose and muscle tissues. 

Adipose D90 (Gy) D90 Error (%) D90 Error (Gy) V200 (cc) V200 Error (%) V200 Error (cc) 
HR-UMC 91.0 N/A N/A 4.34 N/A N/A 
IMC (2.0 mm)  1.05 0.97  16.38 0.85 
IMC (3.0 mm)  1.70 1.57  1.23 0.05 
ICMC (2.0 mm)  -0.53 -0.48  -6.47 -0.26 
ICMC 3.0 mm)  -1.07 -0.97  -0.55 -0.02 
Muscle       
HR-UMC 109.3 N/A N/A 11.37 N/A N/A 
IMC (2.0 mm)  1.31 1.45  14.15 1.87 
IMC (3.0 mm)  2.27 2.53  19.63 2.78 
ICMC (2.0 mm)  0.11 0.12  0.40 0.05 
ICMC (3.0 mm)  0.11 0.12  0.59 0.07 

 

(a) (b) 
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4. The ICMC DVH metrics show 3 fold improvements in accuracy to the D90 and V200 

relative to IMC, with an error 1% or less except for the adipose ICMC 2 mm V200.  

Although the adipose tissue presented poorer ISGE errors, it is still only a 2% effect. 

Furthermore, an entire adipose prostate is extremely unlikely as recommended elemental 

compositions17 assume that the prostate closely resembles muscle tissue. Therefore, in clinical 

practice, the data presented suggests that the average prostate will exhibit negligible ISGE errors 

of less than 0.5%. 

For the breast ISGE geometries, Figure 3.5 shows the distribution of percent ISGE errors relative 

to UMC for the breast adipose and mammary glandular tissue, and Table 3-VII lists the 

corresponding quantitative metrics with Table 3-VIII showing the DVH metrics. Similar to the 

prostate ISGE, the following observations can be made: 

1. The same trends found in Figure 3.4 are seen here as well: IMC generally over-estimates 

het
ijkD  and the 3 mm ICMC approximation exhibits larger errors than 2 mm ICMC.  

2. The breast adipose ISGE error is lower than 0.2%. This is similar to Figure 3.4(b) for the 

prostate muscle simulation. Recall that in the breast case, the homogeneous medium is 

not water but average breast tissue assuming an 85% adipose and 15% mammary 

glandular tissue mixture. The adipose tissue has a linear attenuation coefficient 5% lower 

than that of average breast tissue at 20 keV, while for glandular tissue, it is 40% greater. 

The large difference between the attenuation properties breast and mammary glandular 

tissues leads to the larger ISGE errors for the mammary gland simulation. 

3. The D90 for the full adipose breast essentially has zero error with only a 0.05% error in 

the V200 for both ICMC LR grids. This represents phenomenal dose volume agreement 

with HR-UMC. The mammary gland ICMC breast exhibits 10 fold improvements in 
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accuracy, relative to IMC, for the D90. The V200 shows drastic improvements for the 

3 mm ICMC calculation bringing the error to just over 1% down from over 80% for the 

IMC 3 mm. 

Similar to the prostate case, we can conclude that for clinically plausible tissue elemental 

compositions, the ISGE error is negligible, yielding errors less than 1%, with the majority below 

0.5%. Citing the study of Yaffe et al11, the average breast cancer patient has relatively high (> 

50%) adipose tissue fractions. Their final conclusion gives the 85/15 ratio for adipose and 

glandular tissue respectively. With this conclusion, the ISGE errors associated with using ICMC 

in the breast will more closely align with Figure 3.5(a) than Figure 3.5(b) yielding negligible 

dose volume errors. 

Figure 3.5: ISGE percent error distributions for the breast assuming uniform (a) adipose and (b) mammary glandular tissue 
assignments for all voxels. Both the IMC and ICMC errors relative to UMC are shown. 

 

 

 

 

 

 

 

(a) (b) 
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Table 3-VII: ISGE percent error distribution metrics relative to UMC for both the breast adipose and mammary glandular tissues 
for all voxels with greater than 50% of D90. 

Adipose  Mean Std. Deviation 20th Percentile 80th Percentile MPV 
IMC (2.0 mm)  2.04 5.39 0.90 2.53 1.31 
IMC (3.0 mm)  2.93 8.66 0.94 3.17 2.57 
CMCI (2.0 mm)  -0.01 0.03 -0.03 0.01 -0.02 
CMCI 3.0 mm)  -0.003 0.03 -0.03 0.02 -0.02 
Mammary Gland       
IMC (2.0 mm)  2.61 5.98 1.23 3.90 1.71 
IMC (3.0 mm)  3.80 10.03 1.33 5.54 3.52 
ICMC (2.0 mm)  0.33 0.46 0.21 0.52 0.27 
ICMC (3.0 mm)  0.52 0.82 0.21 0.99 0.30 

 

Table 3-VIII: DVH Metrics for the ISGE breast geometries with adipose and mammary glandular tissues. 

Adipose D90 (Gy) D90 Error (%) D90 Error (Gy) V200 (cc) V200 Error (%) V200 Error (cc) 
HR-UMC 89.7 N/A N/A 2.46 N/A N/A 
IMC (2.0 mm)  2.05 1.88  4.36 0.11 
IMC (3.0 mm)  3.32 3.08  -59.76 -0.92 
ICMC(2.0 mm)  0.00 0.00  0.05 0.001 
ICMC 3.0 mm)  0.00 0.00  0.05 0.001 
Mammary Gland       
HR-UMC 77.1 N/A N/A 2.28 N/A N/A 
IMC (2.0 mm)  2.10 1.65  2.85 0.07 
IMC (3.0 mm)  3.75 3.00  -86.83 -1.06 
ICMC (2.0 mm)  0.29 0.23  0.58 0.01 
ICMC (3.0 mm)  0.48 0.38  -1.19 -0.03 

 

In summary, for both the breast and prostate cases, all metrics show that ICMC effectively 

reduces ISGE error from the IMC 2-6% to under 0.5% for anatomically realistic geometries. 

3.5.3 Cross-Section Gradient Effect 

The next source of error arises from averaging the HR individual interaction cross-sections over 

the LR voxel volume. We call this the cross-section gradient effect (CSGE), which affects the 

particle fluence distribution in the simulation geometry. To isolate CSGE errors, simulations 

were performed with the mass-energy absorption coefficient for all materials set to that of liquid 

water and average breast tissue for the prostate and breast cases, respectively. Meanwhile 

interaction cross-sections were kept at values corresponding to the heterogeneous environment. 

These assignments removed any errors caused by differences in the local absorption properties. 
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Since the ISGE error was found in the previous section to be negligible, no attempt was made to 

correct for ISGE effects on the CSGE error distributions. 

Table 3-X contains the DVH metrics for the CSGE geometry, and Figure 3.6 shows the error 

distributions relative to UMC. There are many observations that can be made from this data and I 

list only a few more prominent ones here: 

1. In all three geometries and for both LR grids, the CSGE errors from ICMC are less than 

3%.  

2. The normalized curves for the 2 mm and 3 mm ICMC distribution in Figure 3.6 show 

only small differences relative to each other, confirmed by the quantitative metrics in 

Table 3-IX. This suggests that there is only a small advantage, in terms of accuracy, by 

using the 2 mm grid over the 3 mm grid. 

Table 3-IX: Quantitative metrics describing the CSGE percent error distributions for the ICMC and IMC simulations relative to 
corresponding UMC calculations. MPV stands for most probable value. 

Custom Ramp Prostate  Mean Std. Deviation 20th Percentile 80th Percentile MPV 
IMC (2.0 mm)  1.98 2.13 0.83 2.83 1.30 
IMC (3.0 mm)  2.42 3.13 0.70 3.97 1.77 
ICMC (2.0 mm)  0.84 0.94 0.37 1.37 0.57 
ICMC (3.0 mm)  0.61 1.35 0.10 1.30 0.43 
Breast        
IMC (2.0 mm)  2.67 2.74 0.83 4.17 1.30 
IMC (3.0 mm)  4.05 3.998 0.90 7.23 2.10 
ICMC (2.0 mm)  -0.07 0.64 -0.50 0.30 -0.30 
ICMC (3.0 mm)  -0.11 0.88 -0.77 0.43 -0.30 
Default Ramp Prostate       
IMC (2.0 mm)  2.11 1.97 0.90 2.83 1.50 
IMC (3.0 mm)  2.80 2.78 0.97 4.10 2.03 
ICMC (2.0 mm)  0.91 0.85 0.37 1.37 0.50 
ICMC (3.0 mm)  0.85 0.99 0.23 1.37 0.37 
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Figure 3.6: CSGE error distributions based on simulation geometries with LAGE error suppressed. The custom ramp prostate, 
breast, and default ramp prostate cases are shown in (a), (b), and (c), respectively. 

Table 3-X: DVH metrics for ICMC, IMC, and UMC for the three cases showing CSGE error for the dose to liquid water in 
heterogeneous media. 

Custom Ramp Prostate D90 (Gy) D90 Error (%) D90 Error (Gy) V200 (cc) V200 Error (%) V200 Error (cc) 
HR UMC 111.1 N/A N/A 11.03 N/A N/A 
IMC 2.0 mm  1.71 1.93  15.44 2.01 
IMC 3.0 mm  2.23 2.54  20.22 2.79 
ICMC 2.0 mm  0.76 0.85  -1.06 -0.12
ICMC 3.0 mm  0.65 0.73  -1.97 -0.21 
Breast       
HR MC 83.5 N/A N/A 2.14 N/A N/A 
IMC 2.0 mm  1.85 1.58  1.17 0.025 
IMC 3.0 mm  3.3 2.85  -106.98 -1.11 
ICMC 2.0 mm  0.0 0.0  -8.98 -0.18
ICMC 3.0 mm  -0.09 -0.075  -7.09 -0.14
Default Ramp Prostate       
HR MC 116.8 N/A N/A 12.25 N/A N/A 
IMC 2.0 mm  1.43 1.69  14.61 2.10 
IMC 3.0 mm  2.03 2.42  19.82 3.03 
ICMC 2.0 mm  0.72 0.85  -0.65 -0.079
ICMC 3.0 mm  0.72 0.85  -1.73 -0.21 

 

(a) (b) 

(c) 
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3. Relative to IMC, ICMC yields a 2-4 fold increase in the 90D  accuracy for the prostate 

cases, with a greater than 30 fold improvement for the breast. Additionally, the 200V  

exhibits an 11-15 fold improvement in accuracy for all three cases. 

Observation #2 is expected since the CSGE only affects the energy fluence distribution. Since 

the interaction cross-sections for each LR-ICMC voxel are an average over the corresponding 

HR volume, the fluence differences between the 2 mm and 3 mm geometries will be small. In the 

brachytherapy applications discussed in this study, since there is no charged particle transport, 

the absorbed dose can be computed as the collision kerma integrated over all energy and solid 

angle, 

 
4CPE

en
c

0 0

( ) ( ) ( , , ) ( , )D K E E E d dE
 



      
 

 r r r Ω r Ω   (3.5.1) 

In this expression, ( , , )E r Ω  represents differential particle fluence, and en /   is the mass-

energy absorption coefficient. In the CSGE geometry, the en /   is the same between the HR-

UMC and both ICMC calculations, effectively making any comparison between the two method 

a comparison of energy fluence. The differences between the 2 mm and 3 mm ICMC 

calculations seen in Figure 3.6 and Table 3-IX and Table 3-X confirm that the fluence 

differences between them are small. This suggests that neglecting local absorption 

heterogeneities, ICMC based on 3 mm CMC has comparable accuracy to ICMC based on 2 mm 

CMC, which is within 3% of HR-UMC. 

To summarize, in the region that receives half of 90D , CSGE error is generally a 3% effect with 

the voxel majority posting errors below 1.5% for all cases and both LR grids.  



www.manaraa.com

 
 

36 
 

3.5.4 Local Absorption Gradient Effect 

The final effect leading to errors in ICMC
,HRijkD , called the local absorption gradient effect (LAGE), 

stems from differences in local energy absorption properties between UMC and ICMC 

simulations. These differences arise from averaging HR voxel mass-energy absorption 

coefficients in regions of high en /   spatial gradients. As shown in eq. (3.5.1), absorbed dose is 

directly related to en /   allowing potential for significant ICMC LAGE errors. This effect was 

isolated by fixing the individual cross-sections to be that of liquid water and average breast 

medium, in the prostate and breast cases respectively, effectively eliminating any CSGE errors 

that arise from differences in the particle fluence. Recalling from Section 3.5.2 that ISGE errors 

were negligible, no attempt was made to correct for them in the LAGE error distributions.  

Figure 3.7 shows the error distributions of IMC and ICMC calculations relative to UMC in the 

LAGE geometry. Table 3-XI presents the DVH metrics for comparison, and Table 3-XII 

contains the corresponding quantitative metrics for the distributions in Figure 3.7. Following are 

some observations: 

1. In Figure 3.7, the custom ramp prostate shows a broad distribution of error, with a large 

number of voxels (about 35% of total) with errors in excess of 10%. Additionally, for this 

same case, it does not appear that the ICMC method shows any advantage, in terms of 

accuracy, relative to IMC. Figure 3.8 shows the relationship between error and the spatial 

gradient magnitude of the HR en /  for 28 keV. This was computed for soft tissues by 

discretizing the gradient magnitude for soft tissues and finding the distribution of 

corresponding dose errors for each gradient bin. The mean is plotted with an “x,” and the 

error bars represent 2 standard deviations about the mean for the error distribution within 
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each gradient bin. This shows the dose error is correlated to the voxel-to-voxel variability 

of  en /  . 

2. Even with the broad errors distribution for the custom ramp prostate, the D90 improved 

relative to IMC 5-10 fold with errors below half a percent. Similarly, V200 improved by 

more than half relative to IMC calculations.  

Table 3-XI: DVH metrics for ICMC, IMC, and UMC for the three cases showing LAGE error for the dose to heterogeneous 
media in liquid water. 

Custom Ramp Prostate D90 (Gy) D90 Error (%) D90 Error (Gy) V200 (cc) V200 Error (%) V200 Error (cc) 
HR UMC 100.2 N/A N/A 8.63 N/A N/A 
IMC 2.0 mm  1.81 1.81  13.66 1.18 
IMC 3.0 mm  2.65 2.66  16.66 1.43 
ICMC 2.0 mm  0.36 0.36  -8.27 -0.71
ICMC 3.0 mm  0.24 0.24  -9.39 -0.81 
Breast       
HR MC 88.9 N/A N/A 2.62 N/A N/A 
IMC 2.0 mm  2.78 2.48  5.27 0.14 
IMC 3.0 mm  4.13 3.68  -31.87 -0.83 
ICMC 2.0 mm  0.84 0.75  -0.15 -0.004
ICMC 3.0 mm  1.10 0.98  -0.56 -0.01
Default Ramp Prostate       
HR MC 96.4 N/A N/A 8.56 N/A N/A 
IMC 2.0 mm  2.92 2.81  16.91 1.45 
IMC 3.0 mm  3.95 3.81  19.83 1.70 
ICMC 2.0 mm  1.41 1.36  -3.30 -0.28
ICMC 3.0 mm  1.51 1.45  -2.94 -0.25 

 

In stark contrast with the custom ramp prostate, the breast and default ramp prostate geometries 

exhibit much narrower error distributions. Additionally, the breast DVH metric errors are 

reduced relative to IMC to under 1% while the default ramp prostate experienced 1.5% errors in 

D90 and a roughly 3% underestimation of the V200.   
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Figure 3.7: Error from the LAGE simulation geometries with CSGE errors removed. The custom ramp prostate, breast, and 
default ramp prostate cases are shown in (a), (b), and (c), respectively. 

Table 3-XII: Numerical descriptors for the percent error distribution relative to UMC in the LAGE geometry for the breast case 
and both prostate cases. 

Custom Ramp Prostate  Mean Std. Deviation 20th Percentile 80th Percentile MPV 
IMC (2.0 mm)  -0.16 10.97 -8.40 8.83 -0.98 
IMC (3.0 mm)  0.51 12.95 -9.25 11.05 -0.35 
ICMC (2.0 mm)  -1.36 10.18 -9.35 6.85 -0.05 
ICMC (3.0 mm)  -1.67 11.50 -10.75 7.65 -0.05 
Breast        
IMC (2.0 mm)  2.04 3.49 -0.59 4.95 1.51 
IMC (3.0 mm)  2.39 4.22 -1.29 6.21 3.55 
ICMC (2.0 mm)  0.11 2.92 -2.06 2.15 -0.03 
ICMC (3.0 mm)  0.16 3.36 -2.76 2.85 -0.03 
Default Ramp Prostate       
IMC (2.0 mm)  0.74 1.15 -0.16 1.56 0.51 
IMC (3.0 mm)  0.95 1.27 -0.13 2.04 0.87 
ICMC (2.0 mm)  -0.01 0.84 -0.40 0.03 0.03 
ICMC (3.0 mm)  0.00 0.88 -0.49 0.09 0.03 

 

(a) (b) 

(c) 
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Figure 3.8: Mean ICMC LAGE error for each en  gradient bin with corresponding bars showing 2 for the (a) 2 mm and (b) 

3 mm ICMC custom ramp prostate simulations. 

 

The source of the broad error distribution for the custom ramp prostate lies in the method used to 

specify voxel-to-voxel tissue elemental compositions. Recall that breast tissues were assigned 

following tissue segmentation from a breast-dedicated CBCT with tissue elemental compositions 

taken from Woodard and White17. The tissues were chest wall muscle, adipose, two different 

mammary glandular tissues and skin for a total of five tissues in the entire geometry. The default 

ramp prostate originally included only 4 tissue type: lung, skeletal bone, air, and muscle with the 

3 additional soft tissues presented in Table 3-I. In contrast, each voxel in the custom ramp 

prostate was assigned from a list of 55 materials based on HU. Though this method has been 

used extensively and accurately for a number of years in external, high-energy beam 

radiotherapy, it has been shown to be very unreliable for low-energy applications88. Furthermore, 

the HU is more influenced by Compton scattering, instead of the photoelectric effect which is the 

dominant interaction in low-energy brachytherapy. 

To illustrate the unreliability of using single-energy CT to assign tissue for low-energy Monte 

Carlo transport, the prostate HU’s in the post-implant CT used in this study range from -18 to 56, 

(a) (b) 
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representing an attenuation coefficient 1.8% lower to 5.6% higher than that of water. After the 

custom ramp CTCREATE tissue assignment, the range of attenuation coefficients within the 

prostate at 28 keV becomes 16% lower and 6% higher than that of liquid water. Within the 

prostate, these tissue assignments also represent frequent, unrealistic deviations of 15% from the 

en /   for liquid water. Therefore, the LAGE errors presented in Figure 3.7(a) do not suggest 

that ICMC is inappropriate for anatomically realistic prostate geometries. Rather the large errors 

stem from artifacts introduced from incorrect voxel-to-voxel tissue composition assignments. 

These artifacts could also have been aided from the incomplete mitigation of streaking artifacts 

in the post-implant CT. 

3.6 Discussion 

The ISGE error distributions plotted in Figure 3.4 and Figure 3.5 confirm our hypothesis that the 

inverse square law effects are mitigated effectively in 
ICMC

,LRijkD  showing errors of less than 0.5% 

for anatomically reasonable geometries. For the three geometries studied here, CSGE exhibitied 

3% errors, representing the small changes in particle fluence that occur from using averaged 

individual cross-sections.  

The largest potential contributor to ICMC error is LAGE. Though the LAGE error is minimal for 

the breast and default ramp prostate geometries, it induces dose computation errors as large as 

30% for the custom ramp prostate due to the high variability of en /   within the CTV. 

However, with emergence of model based dose calculations methods in brachytherapy, there is 

an ongoing debate on the merits of reporting absorbed dose to water in medium, w,mD , vs.  

absorbed dose to medium in medium, m,mD 98-100. The AAPM TG-186 only requires reporting

m,mD , but notes this is only due to insufficient data to support use of w,mD . Within the past year, 
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data has been published to show that w,mD  more accurately estimates the dose to cell nuclei, and 

therefore more correlated to biological events that lead to cell death101,102. If w,mD was reported, 

then LAGE errors would be eliminated, since the voxel-to-voxel variation of local absorption 

properties would be removed. Furthermore, the setup for a w,mD  calculations using ICMC is 

equivalent to CSGE geometry, leading to errors of less than 3% relative to HR-UMC 

calculations. One method to reduce ICMC LAGE errors in m,mD  would be to separate the dose 

scoring grid from the material voxel grid. This would allow a HR representation of the patient, 

but maintain the efficiency of computing dose on a LR grid. This adds a slight increase to 

overhead from additional ray-tracing, but maintains the efficiency advantage from scoring ijkD  

on an LR grid. Under these circumstances, ICMC errors would be reduced down to the ISGE 

level of 0.5%. 

As stated previously, the large LAGE errors observed in our custom ramp prostate case are likely 

due to anatomically unrealistic voxel-to-voxel elemental tissue composition assignments, leading 

to anomalously high en /   spatial gradients. In our test case, these effects are exaggerated by 

residual streaking artifacts due to the metal seeds implanted within the patient’s prostate and an 

unrealistically dense cross-section table vs. Hounsfield number lookup table. Analysis is 

complicated by the un-answered question of how to assign tissue cross-section tables to organs 

or individual voxels for the low energy brachytherapy regime. Furthermore, the single-energy 

CT imaging approach of cross-section mapping in patient geometries, of which our custom and 

default ramp assignments are examples, is inadequate88,90.  Elemental analyses of tissue samples 

fail to address this issue, since sufficiently accurate and comprehensive studies are lacking and 

are also inadequate. Landry et al88 has shown that low-energy brachytherapy dose variations as 
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high as 10% can be found in the breast due to the wide range of published tissue compositions 

for adipose and mammary glandular tissues. This uncertainty could potentially be addressed 

through dual-energy CT methods such as those proposed by Williamson et al92, Landry et al90, or 

Malusek et al91. 

The efficiency gains arising from interpolated-correlated Monte Carlo (ICMC) relative to already 

optimized un-correlated Monte Carlo (UMC) are immense. Gains upward of 1500 were reported 

for the 3.0 mm LR grid. This translates to 0.4 sec and 1.1 sec run-times for the breast and 

prostate CTV’s, respectively, to reach an average uncertainty of 2% our HR 31 1 1 mm   voxels. 

To perform optimization of seed location using a genetic optimization approach96,97, only 7 min 

and 18 min of ICMC runtime on a 3 mm voxel grid would be needed for our HR breast and 

prostate examples, on a single CPU.  Furthermore, given cost-effective availability of multi-CPU 

and muti-core computer architectures, parallel processing is readily available to anyone, adding 

further reductions to MC run time. Following optimization, CMC could compute a highly 

accurate final dose map. Similar to external beam radiotherapy’s use of the pencil-beam 

algorithm for IMRT optimization, use of ICMC for brachytherapy optimization would produce 

only convergence errors, while the final CMC calculation would yield very low dose evaluation 

errors. 

As mentioned previously, the times reported here are for radiation transport only and do not 

include the extra time needed for averaging cross-sections and en /  , nor the time to read in the 

input file and create the simulation geometry. The time reported here were for a single radiation 

transport simulation. In the clinical setting of treatment planning optimization, the radiation 

transport could be computed multiple times, while the geometry setup and the averaging of 
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cross-sections and en /   is computed only once. Therefore, the time and efficiency gains 

reported for the radiation transport is more representative of the clinical setting. As a side note, 

the time required for set-up is below 1-2 seconds for a wide range of problems. 

3.7 Conclusion 

ICMC has been shown to be accurate relative to UMC with errors smaller than 3% for 80% of 

the voxels given anatomically realistic cross-section and local absorption mapping. Errors from 

the inverse square law were isolated to the high dose regions, but were very small while errors 

associated with cross-section differences between the HR and LR grid were greatest in the low-

dose regions. Errors associated with local absorption properties were sensitive to the spatial 

gradient of the mass-energy absorption coefficient corresponding to the HR spatial grid. Further 

study on accuracy is warranted as more accurate methods become available for voxel cross-

section mapping. However, ICMC is the most efficient MBDCA introduced to date, producing 

HR dose maps in under a minute, and is a perfect candidate to drive seed placement optimization 

algorithms.  
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4. Adjoint Biased Forward Monte Carlo 

4.1 Introduction 

As discussed previously, adjoint-biased forward Monte Carlo (ABFMC) is a promising method 

to increase the efficiency of CBCT Monte Carlo (MC) scatter simulations. A brief derivation of 

my ABFMC implementation is presented in this chapter followed by a presentation of its 

performance and corresponding conclusions. 

4.2 Theory 

4.2.1 Weight Windows 

I start with an abbreviated description of the weight window method: More details can be found 

in Appendix D. As stated in Chapter 1, systematic splitting/rouletting is an alternate 

implementation of biased importance sampling that avoids explicitly drawing random samples 

from the biased PDF63,64,69. Remember that , , , , ,( , , , )m n m n m n m n m nE Wβ r Ω  is  a randomly sampled 

collision within the phase space,  , ,EP r Ω , for the thm  history leaving the thn  collision, 

where ,m nr  is the site of interaction, ,m nΩ is the trajectory of the particle leaving the collision, 

,m nE  and ,m nW  are the particle energy and statistical weight (or weight for short), respectively, 

following collision.  

 Weight windowing (WW) constrains the weight, ,m nW , to be within a certain interval or 

“window” centered about a desired target value, TW  as illustrated by Figure 4.1. If  ,m nW is 
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A forward Monte Carlo (FMC) simulation is a numerical solution of the forward Boltzmann 

transport equation (FBTE), given below in integral form: 

 0( ) ( ' ) ( ') ' ( )K d    P P P P P P  (4.2.1) 

where ( ) P  represents the angular particle fluence, the transition operator ( ' )K P P  describes 

the likelihood of the state transition 'P P , taking into account particle attenuation and 

scattering, and 0 ( ) P  is the primary particle fluence distribution arising from the emission of 

primary particles from the source distribution q(P). The FBTE describes the transport of particles 

in the forward direction, i.e. from 'P P , tracking from source to detector and, generally, from 

higher energy states to lower energy states. In CBCT scatter simulation, the Monte Carloist is 

interested in computing a particular score, R, e.g., energy imparted to a particular pixel of the 

CBCT flat panel detector:   

 ( ) ( ) dR f    P P P   (4.2.2) 

where the detector-response function, ( )f P , is the contribution to the detector reading of a 

particle at phase location P.   

Our generic detector-response problem can be also be solved via the corresponding adjoint 

Boltzmann transport equation (ABTE), which tracks particles in the reverse direction, i.e. from 

P P , starting from the detector and moving towards the source, and from lower energy states 

to higher energy states:  

 * * *
0( ) ( ') ( ') ' ( )K d    P P P P P P  (4.2.3) 

where * )( P  is the adjoint particle flux. In this expression, *
0 ( ) P is the distribution of 

“primary” adjoint particles emerging from the adjoint source *( )q P , which is represented by the 
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detector response function, ( )f P , in the ABTE formulation. Similar to the forward direction, the 

detector response, R  can also be computed, but instead using the adjoint flux, *( ) P . Notably, 

it can be shown that103 

 *( ) ( ) ( ) ( )dR q f d     P P P P P P  (4.2.4) 

4.2.3 Optimal Weight Window Target Value 

It can be shown that the adjoint flux, *( ) P , has a fundamental physical interpretation: *( ) P  is 

the expected (mean) contribution to the detector response R  from a point, P , in phase space and 

all its progeny. The term “expected value” refers to averaging the detector response contributions 

over all  possible photon random walks originating at P. Thus, *( ) P  is a direct measurement of 

the importance of P to R . In fact, it can further be shown that the optimal weight window target 

value, TW , for importance sampling via weight windowing is64,70  

 †
*

)
( )

(TW
R




P
P

  (4.2.5) 

where R acts as a normalization factor for the importance of P . Unfortunately, using an exact 

adjoint is impractical as it requires the same amount of CPU resources as a forward MC 

simulation to compute. However, during the last decade, fast ABTE solvers that yield 

approximate 3D adjoint solutions, * ( )app P , have been developed using the deterministic discrete 

ordinates method (DOM). 
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4.2.4 Importance Sampling Revisited 

Suppose we have an approximate deterministic adjoint solution, and *
app app ( ) ( )R q d  P P P .  

The resulting importance map yields a biased FMC scheme described by the following modified 

BTE70: 

 
*

*
0*

( )ˆ ˆ ˆ ˆ( ) ( ' ) ( ') ' ( ) where ( ) ( ) ( ) /
( ')

app
app a p

app
pK d R

 
         

  


P
P P P P P P P P P

P
 (4.2.6) 

Here, ,0mβ  
is sampled from a biased source (discussed below) that gives rise to 0

ˆ ( ) P  and 

biased kernel PDF’s. In FMC, ,0mβ  is first sampled from a biased source for primary photons 

while successive samplings of ,m nβ  for secondary photons are taken from the biased transition 

kernel, * *) ( ) / ( )( ' app appK   P P PP . Evaluating the FMC score is then acquired by taking the 

average over histories of the detector scores times their appropriate weight correction factors, 

 

app ,
, ,

,

, , ,0 ,

*
1 0 1 1 app

1
1 ,

1 1
,

( )

( )
 ( )

where    · · ·

m mN NM M

m n m

m n
m n m n

m n

m n m m m m n

n

n

R f
W f

N N

w

R

W w w w


   




 



 

 



β
β

β
     (4.2.7) 

In this expression ,m nβ  represents the phase-space samples derived from a MC solution of eq. 

(4.2.6), and wm,n represents a photon weight from history m at following interaction n where 

weight corrections are applied to yield an unbiased estimate. Under certain circumstances, by 

using a next event-type scoring function, exact adjoint-based importance sampling yields a zero-

variance forward MC simulation68. More practically, using approximate DOM solutions, 

* ( )app P , to implement this scheme in nuclear engineering applications increases efficiency up to 

three orders of magnitude above purely analog techniques64,70,104. The coupling of DOM 
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techniques with MC simulation is sometimes referred to as hybrid MC (h-MC) and is an 

implementation of ABFMC.  

4.2.5 Consistent adjoint-driven importance sampling (CADIS) 

The biased transport process described in eq. (4.2.6) is the basis of the consistent adjoint driven 

importance sampling (CADIS) proposed by Wagner et al70. CADIS consists of the following 

three components.  

1) Compute *
app from some benchmarked DOM code  

2) Use *
app )( P  to derive an importance-biased source distribution, ˆ( )q P , for sampling 

primary particles in the forward MC simulation: 

 
* *

app

*
appapp

( ) ( ) ( ) ( )
ˆ( )

 ( ) ( )
app q q

q
Rq d

 
 


P P P P

P
P P P

  (4.2.8) 

The simplifying step comes from eq. (4.2.4). This source biasing will bias the primary 

particle sampling process towards histories that strongly contribute to the detector score.  

3) Rather than sample directly from the biased kernel * *
app app( ' ) ( ) ( ')K   P P P P  in 

eq. (4.2.6), sample from the analogue kernel ( ' )K P P  and then use WW to split 

important particles and kill, via Russian roulette, unimportant particles based on a target 

weight value of 

 app

*
app

( , )
( , )TW

R
E

E



r
r

  (4.2.9) 

Equation (4.2.9) employs an angle-independent adjoint solution, that has been integrated over all 

solid angle, * *
app app

4

( , ) ( , , )E E d


  r r Ω Ω . Though the angle-dependent solution (angular 
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biasing in addition to energy- and spatial-biasing) theoretically would yield greater efficiency 

gains over traditional MC techniques, it requires 20 GB  of RAM for typical problems, making 

its application impractical. Using a coarse angular grid has the danger of introducing “ray 

effects” in the ABFMC solution. Ignoring angular biasing (by using an angle-independent 

adjoint solution) has no effect on the final accuracy of the Monte Carlo solution, but does result 

in some loss in efficiency.  

4.2.6 Forward Adjoint Importance Generator 

Another approach to ABFMC is to compute an “on-the-fly” estimate of the importance function 

during a forward Monte Carlo calculation. The forward-adjoint importance generator (FAIG) 69 

computes a statistically noisy approximation to the importance function on a coarse phase-space 

grid by averaging over the ratio of each colliding particle’s weight in a given phase-space cell 

and the contribution of the particle and all subsequent collisions to the detector score. The weight 

normalization is to account for any biased transport mechanisms that alter particle statistical 

weight. The first 10% of the simulation histories are used to estimate the initial importance 

function following this “ramp-up” period during which, no transport biasing is applied. For the 

remainder of the simulation, the importance map is continually computed and updated “on-the-

fly”. Therefore, when weight windowing is initiated, it uses a statistically noisy importance map 

that converges to the true value as the simulation progresses. The normalization factor, R, is 

simply computed as the average detector score implicitly during the FAIG process. Unlike the 

CADIS methodology, this implementation does not bias the primary source sampling, and only 

influences the particle transport through weight windowing. This is the ABFMC implementation 

presented in Appendix C. It can be used to compute the importance function “on-the-fly,” OTF-

FAIG, or to pre-compute a low-uncertainty importance map, PC-FAIG. 
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4.3 CADIS Implementation 

4.3.1 Multigroup Approximation 

Since the discrete ordinate method (DOM) solves the BTE in a discretized, non-continuous phase 

space, eq. (4.2.9) must be converted to discretized form. To start, the BTE is discretized in 

energy using the multigroup approximation. The following derivation is adapted from Lewis and 

Miller105. First, let’s start with the FBTE in differential form, 

 

 

0

· ( , , ) ( , ) ( , , ) ...

ˆ, , ) ( , , ) (( , , | )

E E E

E E E E d dEq






    

        

Ω r Ω r r Ω

r Ω r Ω Ω Ω r Ω
  (4.3.1)  

In the multigroup approximation, the energy range is divided up into G  intervals. By convention 

the group number increases as the energy decreases. Thus, GE  and 0E  are the minimum and 

maximum energy investigated, respectively. The min and max bounds of group, g, are then 

described as 1[   ]g gE E  . By integrating over the group bounds, the group fluence is defined as: 

 
1

( , ) ( , , ) ( , , )
g

g

E

g g
E

E dE E dE


     r Ω r Ω r Ω   (4.3.2) 

Likewise, the energy integral in eq. (4.3.1) can be divided up into the sum of contributions from 

each group, 

 
10

G

g
g

dE dE





      (4.3.3) 

Next, integrating eq. (4.3.1) between gE  and 1gE   leads to, 
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1

· ( , , ) ( , ) ( , , ) ( , , )

ˆ( , , ) ( , , | )

g g g

G

g g
g

E dE E E dE q E dE

E E E d dE dE








    

      

  

 

Ω r Ω r r Ω r Ω

r Ω Ω Ω r Ω   (4.3.4) 

This expression can simplified by assuming energy separability. Suppose that within each energy 

group, the angular fluence can be reasonably approximated as a product between an energy-

dependent function, ( )E , and the group fluence, ( , )g r Ω , as follows: 

 1( , , ) ( ) ( , ) for  in [ , ]g g g gE gE E E   r Ω r Ω   (4.3.5) 

( )g E  is called the spectral weighting function and is normalized over the group fluence, 

 ( ) 1gg
E dE    (4.3.6) 

PTRAN has been modified to compute ( )g E  for a user defined energy group structure. 

Substituting eqs. (4.3.5) and (4.3.6) into eq. (4.3.4) yields the following expression for the BTE 

in multigroup form, 

 

1

· ( , ) ( , ) ( , ) ( ) ( , , )

ˆ( , ) ( , , | ) ( )

g g gg g

G

g gg g
g

E E dE q E dE

E E E d dE dE

 

 




  

      

 

 

Ω r Ω r Ω r r Ω

r Ω Ω Ω r Ω
  (4.3.7) 

From this expression, the multigroup cross-sections can now be defined as 

 ( ) ( , ) ( )g gg
E E dE   r r   (4.3.8) 

 ˆ ˆ( | ) ( , , | ) ( )gg gg g
E E E dE dE   

       Ω Ω r Ω Ω r   (4.3.9) 

Since the spectral weighting function, ( )g E , is normalized within each energy group, eqs. 

(4.3.8) and (4.3.9) are simply expectation value integrals over the energy group range. The 

multigroup cross-sections are simply weighted averages of the continuous cross-section over the 

energy group range. 
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Finally, we can define our multigroup source as 

 ( , ) ( , , )g g
q q E dE r Ω r Ω   (4.3.10) 

The multigroup source differs from the multigroup cross-sections in that it is not an expectation 

value integral: It is the continuous integral of the source over the group energy range. 

Substituting eqs. (4.3.8), (4.3.9), and (4.3.10) into eq. (4.3.7) yields the FBTE in the conventional 

multigroup form, 

 
1

ˆ· ( ) ( , ) ( , ) ( | ) ( , )
G

g g g gg g
g

q d  


          Ω r r Ω r Ω Ω Ω r r Ω Ω   (4.3.11) 

The corresponding adjoint expression is: 

 * *

1

ˆ· ( ) ( , ) ( , ) ( | ) ( , )
G

g g g gg g
g

f d  


             Ω r r Ω r Ω Ω Ω r r Ω Ω  (4.3.12) 

where the group detector response function is defined as 

 ( , ) ( , , )g g
f f E dE r Ω r Ω   (4.3.13) 

 

The remaining BTE can be fully discretized in space and angle: the ambitious reader is referred 

to Lewis and Miller106 for a readable derivation. 

4.3.2 Choice of Forward Source Function 

The biased transport process described in eq. (4.2.6) includes a biased source represented by eq. 

(4.2.8). The non-biased forward source function, ( )q P , employed in CBCT simulations in this 

dissertation, is defined at the anode focal point, 0r , approximated as an isotropic point source, 

 pri
0 0

1
( , ) ( )· )P

4
(Eq E E


 r r r   (4.3.14) 
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This expression uses the central axis primary spectrum priP ( )E E  of the CBCT scanner in question. 

The corresponding biased source is as follows with some simplifications, 

 
pri *

0 app
0 * pri

app 0

( )·P ( )· ( , )
ˆ( , )

( , )·P ( )
E

E

E E
q E

E E dE

  



r r r

r
r

  (4.3.15) 

In eq. (4.3.15), the denominator is simply the detector response 4 R  , 

 * pri
app 0

1
( , )·P ( )

4 EE E ER d


  r   (4.3.16) 

and a corresponding weight window target of 

 
* pri
app 0

*
app

( , )·P ( )
( , )

4 · ( , )

E

T

E E dE
E

E
W







 r

r
r

  (4.3.17) 

 

4.3.2.1 Detector Response Multigroup Form 

Eq. (4.3.16) can also be expressed in the multigroup form. Following the same steps used in 

Section 4.3.1 and applying the angular independent approximation, eqs. (4.3.3) and (4.3.5) can 

be substituted in eq. (4.3.16) to yield, 
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The corresponding weight window target in multigroup form would then be 
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  (4.3.19) 

The continuous energy dependence of the weight window target value is not yet removed 

because of the energy dependent weight function ( )E  in the denominator and further 
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manipulation is warranted. The energy dependence on the target weight could be removed by 

setting   to a constant value such as, 
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  (4.3.20) 

where 1g g gE E E   . Eq. (4.3.19) now simplifies to: 
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  (4.3.21) 

Note that this definition for   is different from the energy weighting function utilized to 

compute the multigroup cross-section libraries. Though this is inconsistent, in the hands of 

ORNL investigator, this approach to target weight evaluation has proven to be quite effective in 

nuclear engineering applications64,70. 

Following this same process, the biased source can similarly be expressed as, 
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with a corresponding primary particle weight correction factor of, 
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For practical use in PTRAN equations (4.3.22) and (4.3.23), a numerical integration over a sub 

grid is performed to compute pri

'

P ( )E

g

E dE . 



www.manaraa.com

 
 

56 
 

4.3.3 Detector Response Function 

As mentioned previously, the detector response function, ( )f E , is used as the adjoint source in 

DOM calculations. For my purposes, using eq. (4.2.4), the detected response is the energy, in 

keV, deposited to the detector. The units of ( )f E , then, are in 2keV cm . Treating the flat panel 

detector as having 100% detection efficiency for scattered photons released in scintillating 

crystal (not 100% detection efficiency of incident photons), the following detector response 

function was used in all the PARTISN calculations, 

 CsI CsI
CsI

(

det

) ) w( , he) re(1 ,d
E le

t
E Af E l  Ω

Ω Ω
 


  (4.3.24) 

In the above expression, CsI ( )E  is the linear attenuation coefficient for the CsI scintillating 

crystal, CsIl  is the path length through the crystal, t is the thickness of the crystal, detΩ  is the unit 

vector normal to the detector plate, and dA  is the detector area. The same detector response 

function used in the PTRAN Monte Carlo calculations. 

4.3.3.1 Multigroup Form 

For the DOM multigroup calculations, eq. (4.3.24) can be expressed in multigroup form by 

integrating over each energy group as follows, 

 CsI CsI( )(1 )E l
g d g

A E ef dE     (4.3.25) 

4.3.4 PARTISN Implementation  

For testing CADIS, DOM calculations were completed with PARTISN107 from the Los Alamos 

National Laboratory (LANL). PARTISN calculations used Sn=32 angular quadrature with a Pn 

order of 5 to remove ray-effects. The IGEOM variable was set to X-Y-Z to accommodate a 3-D 

voxelized geometry.  Figure 4.2 contains two different PARTISN calculation grids that were 
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investigated. The fine grid (FG) contained 41 100 31   spatial cells, while the coarse grid (CG) 

had 15 30 15   spatial cells. The PTRAN y-axis corresponds to the z-axis in PARTISN, and the 

z-axis in PTRAN corresponds to the y-axis in PARTISN. To remove confusion, all future 

references to coordinate axes, including discussions of PARTISN, will assume the PTRAN 

coordinate system. 
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Figure 4.2: Cross-section of PARTISN DOM calculation grid assuming CBCT MC primary source at anode for the fine grid 
(left) and the coarse grid (right) showing the bow-tie filter (cyan), the cylindrical phantom (blue),  and the surrounding air 
(orange). The detector plate is located at the positive y-bound. 

  

detector plate 

phantom

bowtie filter 
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The different colors in Figure 4.2 correspond to the three different media simulated: aluminum 

bow-tie filter (cyan), an elliptical cylinder consisting of water with major- and minor-axes of 

10 cm and 8 cm respectively with a 12.5 cm length (blue), and the air background (orange). This 

figure was generated using a MATLAB m-file, contained in Appendix D and called 

“PARTISN_gridStructure.m,” created to assist the user in writing PARTISN input files.  

The variable NGROUP was set to 8, specifying eight energy groups, with energy bounds in keV 

of [1, 21, 29, 39, 53, 61, 69, 90, 124], to increase the efficiency of computing *
g . The group 

cross-section libraries were computed using the NJOY code system, again from LANL. The 

NJOY input file, containing the energy group structure, used to compute the multigroup cross 

section library is included within this dissertation as Appendix E. For a thorough description on 

computing the weighting function, the reader is invited to read Daskalov et al31. PTRAN was 

modified with an option to produce the weighting function as output for a central voxel of the 

simulated phantom.  

4.3.5 PTRAN Modifications 

For the alterations in PTRAN to perform weight windowing, please read Appendix D which 

contains a detailed description. PTRAN was modified to accept the DOM adjoint flux as input 

for the importance function. Furthermore, an additional modification to PTRAN was made to 

allow a non-uniform importance grid that matches the PARTISN calculation grid. 

4.4 ABFMC Performance Assessment 

4.4.1 Assessing Accuracy 

The accuracy of our CADIS implementation was assessed with the same technique used in 

Appendix 2, eq. (8) taken from Kawrakov et al82 : 
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In this expression, ikz  is defined as the difference between the Monte Carlo computed signals at 

ik as computed using the ABFMC scheme, WW
ikR , and the regular, non-ABFMC MC, MC

ikR , 

expressed as the number of standard deviations: 
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  (4.4.2) 

Figure 4.3 shows the distribution of ikz  plotted along with a fit of ( )ikp z  to the data using 

Matlab. The fit parameters were: 1 0.0001  , 1 0.9618  , 2 0.00593  , and 2 1.81   . Due 

to the average value of WW

2

ikR
  to be 2.5% , these parameters suggest that 0.01% of the pixels have 

a 2.4%  error, and 0.5%  of the pixels are underestimated by 4.5% . These errors affect only 

0.51%  of the pixels, supporting our hypothesis that ABFMC results in unbiased results relative 

to conventional FMC.. 

 

Figure 4.3: The distribution of ( )ikp z using the ABFMC implementation with corresponding fit. 
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4.4.2 Efficiency Assessment 

4.4.2.1 Efficiency Metric 

As a reminder from Chapter 2, the figure of merit, FOM for each flat panel detector pixel ik is 

defined as, 
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

  (4.4.3) 

where CPUT  is the CPU time for the respective simulation. The efficiency gained from using 

ABFMC over normal MC, ikG , is then defined as the ikFOM  ratio, 
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G    (4.4.4) 

4.4.3 ABFMC Candidate Comparison 

The efficiency assessment was completed for four different approaches to ABFMC presented 

implicitly and explicitly in this chapter. I list them here with corresponding summaries for 

convenience.  

1. CADIS: The biased transport process using weight windowing outlined in eqs. (4.3.21) 

through (4.3.23), using adjoint PARTISN with eq. (4.3.25) as the adjoint source. 

2. Adjoint: The same as CADIS minus the source biasing. Primary particles are randomly 

generated using the non-biased central axis primary spectrum, pri
,P ( )E g nE . 

3. OTF-FAIG: This is the forward adjoint generator discussed in Section 4.2.6 and 

presented in Appendix D.  

4. PC-FAIG: At the end of simulation using the OTF-FAIG, PTRAN has the option of re-

using the last updated importance function at the beginning of a new simulation. In this 
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way, the OTF-FAIG can be used to pre-compute a low-uncertainty solution to the 

importance function that can be used by a future PTRAN simulation with the same 

geometry. This is what I call PC-FAIG. In other words, the importance function is 

computed in a separate calculation and used for the PC-FAIG simulation. 

The efficiency gains resulting from the above approaches are compared against each other in two 

ways. First, 20 million histories were run for both non-weight windowed (NWW) and for each 

ABFMC simulation for both the FG and CG importance grids. The efficiency gain distribution 

with respect to detector module pixels, ik, was computed using eq. (4.4.4). The second 

comparison involved running PTRAN with the NWW and above ABFMC approaches for 2 min 

and comparing the distribution of the percent standard deviation about the mean for every ik 

pixel vs. the energy scatter signal produced for a low-uncertainty calculation. 

4.4.4 PTRAN Simulation Environment 

To explore the affect from ABFMC on Monte Carlo CBCT scatter projection efficiency, two 

source models were tested: true primary photon isotropic point source at the x-ray tube anode 

and a phase space source which includes effects of beam hardening and scattering from the 

bowtie filter. For the primary photon source, incorporating CADIS source biasing using 

eq. (4.3.15) is trivial. In both cases, the same elliptical cylinder described in Section 4.3.4 was 

imaged in full-fan geometry with the bowtie filter included. The CBCT detector was modeled as 

a slab of CsI with dimensions of 20 cm 15 cm  broken into 2.5 mm square 160 120  detector 

pixels (A sample PTRAN input file is included as Appendix G). In practice, fewer detector 

modules can be simulated, for example a 40 30  grid, and the full 1024 768  resolution can be 

reclaimed through interpolation since the amount of high frequency content in the scatter signal 

is low48.  
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The phase space source consisted of a list of phase space coordinates describing particles that 

have crossed a spatial boundary of some sort. For the CBCT simulation geometry, the boundary 

was a plane 200 mm downstream of the bowtie filter: when a particle crosses this plane, the 

particle is tallied and its phase space parameters (position, trajectory, energy, weight) are added 

to the phase space file. When utilizing a phase space source, instead of randomly launching 

particles from the x-ray tube focal spot, a particle is read from the previously generated file in 

consecutive order and transported as a primary particle. Use of a phase space source in and of 

itself can be a powerful variance reduction technique (source biasing) when the geometry 

upstream of the threshold remains constant for various simulation geometries (in our case for all 

patient anatomies and gantry angles). This is especially true when there is a highly scattering 

attenuator upstream, such as a bowtie filter. Unfortunately, because of the difficulty in describing 

this source in closed form and/or numerically, the CADIS source biasing is difficult to 

implement and therefore was not implemented for our study. Instead, the DOM adjoint fluence 

was used to initialize the importance function, using eq. (4.3.21), without the coupled source 

biasing. To dispel confusion, whenever the phase-space source is used in conjunction with 

ABFMC, the acronym will be preceded by an additional “PS” for phase space. For example, if 

the adjoint importance function was used in combination with a forward MC a phase space 

source model, the results would be referred to as “PS-Adjoint.”  
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4.4.4.1 Full Primary Source at Anode 

4.4.4.1.1 Efficiency Gain 

Figure 4.4 shows the distribution of WW
ikG over simulated detector pixels. Table 4-I and Table 4-II 

show parameters that numerically describe the shape of the distributions plotted in Figure 4.4, 

namely the mean, most probable value (MPV), median, and the 20th and 80th percentile values 

specifying the minimum gains for which 20% or 80% of the pixels have smaller gains. 

Table 4-I. WW
ikG distribution statistic for comparing ABFMC approaches to the non-weight windowed PTRAN using a fine grid 

(FG) for the importance function. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW vs. CADIS 30.84 30.78 30.56 26.58 40.52 
NWW vs. Adjoint 30.11 29.29 29.92 25.99 39.84 
NWW vs. OTF-FAIG 14.21 0.75 12.15 12.16 32.38 
NWW vs. PC-FAIG 37.08 36.20 37.22 32.68 49.55 

 

Table 4-II. WW
ikG distribution descriptors for comparison of the ABFMC approaches to the non-weight windowed PTRAN using 

a coarse grid (CG) for the importance function. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW vs. CADIS 16.72 16.16 16.59 14.38 22.04 
NWW vs. Adjoint 16.35 14.96 16.11 13.89 21.44 
NWW vs. OTF-FAIG 18.13 15.88 17.54 15.02 24.33 
NWW vs. PC-FAIG 37.21 37.25 37.38 32.65 49.35 

 

Comparison of these distributions leads to the following observations: 

1. When using the multigroup adjoint fluence to define the importance map, the marginal 

efficiency improvement from CADIS source biasing using eqs. (4.3.22) and (4.3.23) are 

small. Both the plots in Figure 4.4 and the table data in Table 4-I and Table 4-II show 

very little advantage in efficiency from using CADIS over Adjoint. This suggests that in 

this problem, the coupling between primary source particle generation and subsequent 

weight windowing is not an effective method to further increase the efficiency of these 
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scatter calculations. Since we are only interested in the scatter component of the 

projection, it would more appropriate to bias the sampling of a first-collision source. Use 

of such a source could potentially take advantage of the consistency in coupling the 

source generation and particle transport biasing. The first collision source would be of 

interest to future studies. 

2. Changing from fine to coarse importance grids reduces the efficacy of adjoint biased, 

both CADIS and Adjoint, Monte Carlo by half. Because PARTISN uses the same spatial 

grid for representing fluence and radiological uniform spatial cells, FG and CG do not 

model the bowtie filter with equivalent accuracy. Referring back to Figure 4.2, the bowtie 

filter is modeled more accurately in the FG than in the CG grid. In fact, in the CG 

geometry, there is a gap between the two cuboids modeling the bowtie filter body 

allowing adjoint particles to pass through un-attenuated. This was a non-physical effect, 

and an artifact from how the analytical representation of the bowtie filter was mapped to 

the PARTISN calculation grid. This hole caused an increase in the adjoint flux at the 

location of the primary source. Figure 4.5 shows the * ( )g r  ratio of the CG to FG 

importance grids following the interpolation of the CG grid to match the FG grid. At the 

primary source, the CG PARTISN * ( )g r  is roughly 2.5 times higher than that of the FG 

calculation. Referring to eq. (4.3.21), results in weight window target values 2.5-fold 

larger than the corresponding FG values leading to a decrease in efficiency from using an 

inaccurate importance map. This could be fixed by using a slab attenuator in place of the 

bowtie filter approximation.  Since the OTF- and PC-FAIG implementations are immune 

to this difficulty (since importance function grid has nothing to do with MC modeling 

accuracy), the CG and FG efficiency gain distributions are much more similar. 
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Figure 4.4: The WW
ikG  distribution using the primary point source for the (a) FG and (b) CG importance grids. “NWW” refers to 

conventional MC simulation without importance sampling. 

 

Figure 4.5: The adjoint flux, * ( )g r , ratio between the CG and FG importance grids with the CG adjoint flux interpolated onto 

the FG grid. 

 

Figure 4.6: Distributions of the percent standard deviation about the mean for the four importance grids generated by the forward 
adjoint importance generator (FAIG). 

  

(a) (b)



www.manaraa.com

 
 

67 
 

3. A high level of statistical uncertainty in the PC or OTF importance map negatively 

impacts the efficiency gain realizable through ABFMC. This is shown through the stark 

contrast in efficiency performance for the OTF-FAIG between the FG and CG 

importance grids. In fact, the most probable value (MPV) for the OTF-FAIG using the 

FG importance grid is 0.75, an efficiency decrease not increase, while the CG efficiency 

performance is similar to the Adjoint and CADIS implementations. The explanation is 

found in Figure 4.6 which shows the distributions of the percent standard deviations 

about the mean for the four importance grids generated by the forward adjoint importance 

generator used in these simulations. The red dotted curve corresponds to the OTF-FAIG 

for the FG importance grid, and demonstrates a generally high statistical uncertainty with 

a broad peak between 12% and 22%. Note that this is the uncertainty at the end of the 20 

million photon histories used to compute the scatter projections. The uncertainty was 

much higher immediately following the ramp-up stage of the simulation, likely leading to 

the peak at 0.75 in Figure 4.4(a). While the FG importance grid has 61.0168 10  

importance cells, the CG has only 45.4 10  cells, and both have 620 10  histories to 

resolve the importance grid with a ramp-up phase of only 64 10  histories before the 

importance grid is used no matter what its associated uncertainty. The high uncertainty 

associated to the importance grid, as generated using the OTF-FAIG method, leads to 

decreased efficiency performance and could lead to efficiency losses as compared with 

non-weight windowed Monte Carlo.  

4. Another observation from Figure 4.4 is that there is no additional gain from using a more 

accurate importance grid with the FAIG in terms of spatial resolution. In fact, the CG 

performs slightly better due to lower importance function statistical uncertainty (see  
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Figure 4.6).  This suggests that there is no reason to use a high spatial resolution 

importance grid when using FAIG. The lower spatial resolution grid will also decrease 

the amount of time required for the PARTISN DOM calculations, though more accurate 

methods need to be adapted to model the BT filter. This is a promising result as it leads to 

decreased calculation times for DOM and the time required for the forward adjoint 

generator to resolve a usable importance map 

5. A final observation from Figure 4.4Figure 4.6 is that while a high uncertainty in the 

FAIG importance grid leads to efficiency losses, the uncertainty does not necessarily 

have to be extremely low either. The uncertainty in the importance map used by the PC-

FAIG simulation in Figure 4.4 is shown in the blue curve in Figure 4.6. As stated before, 

there is only a small difference between the PC-FAIG in the FG and the PC-FAIG in the 

CG where the importance map uncertainty was much lower (green curve in Figure 4.6). 

This suggests that the importance map is allowed some noise with little loss to efficiency 

allowing roughly a 7% uncertainty for an efficient calculation.  

Table 4-III: Percent standard deviation about the mean vs. scatter signal distribution quantitative metrics for each ABFMC 
approaches to the non-weight windowed PTRAN using a fine grid (FG) for the importance function following only a 2 min CPU 
time. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW 65.78 99.75 63.50 52.84 77.34 
CADIS 14.41 12.70 13.80 12.50 15.59 
OTF-FAIG 36.89 18.07 29.63 18.68 55.93 
PC-FAIG 13.05 11.70 12.40 11.41 13.90 
 

Table 4-IV: Percent standard deviation about the mean vs. scatter signal distribution quantitative metrics for each ABFMC 
approaches to the non-weight windowed PTRAN using a fine grid (CG) for the importance function following only a 2 min CPU 
time. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW 65.78 99.75 63.50 52.84 77.34 
CADIS 19.32 17.68 18.58 16.68 21.27 
OTF-FAIG 20.46 13.40 15.89 13.50 24.85 
PC-FAIG 13.05 11.70 12.50 11.41 14.00 
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4.4.4.1.2 Two minute Uncertainty Distributions 

Figure 4.7 shows the scatter statistical uncertainty distributions vs. expected scatter signal. Table 

4-III and Table 4-IV contain a few specific parameters that describe the shape of the uncertainty 

distributions for the 2 min  simulations. The same observation seen in the previous section, 

Section 4.4.4.1.1, can also be seen here, but expressed differently. For example, observation 

number 3, that a high level of uncertainty in the FAIG-produced importance map can lead to 

decreased effectiveness, is manifested in Figure 4.7(a) as the large spread in the statistical 

uncertainty.  

4.4.4.2 Phase Space Source 

As stated before, modeling the source as a phase space file can be an extremely effective 

variance reduction technique by itself when the collecting threshold is downstream of a highly 

scattering attenuator and every geometry element upstream of the threshold remains constant for 

wide variety of simulation geometries. Since CBCT meets these requirements, it is a perfect 

candidate for phase space source modeling. Figure 4.8 shows the distribution of WW
ikG , 

comparing the ABFMC approaches using a phase space source, against the non-WW Monte 

Carlo simulation using the full primary source. The distribution of using the phase space source 

alone, with no weight windowing is also plotted to show its individual effect. 

Table 4-V: distribution descriptors comparing the full-primary source, non-weight windowed PTRAN (NWW) to the 

phase-space source, non-weight windowed PTRAN (PS-NWW) and the ABFMC approaches using a fine grid (FG) for the 
importance function and the phase-space source. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW vs. PS-NWW 14.65 12.60 14.15 12.11 18.89 
NWW vs. PS-Adjoint 199.47 206.50 201.69 177.49 271.76 
NWW vs. PS-OTF-FAIG 106.12 11.41 104.54 93.48 182.24 
NWW vs. PS-PC-FAIF 220.47 211.77 218.64 190.13 291.00 
 

WW
ikG
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Table 4-VI: distribution descriptors comparing the primary point source, non-weight windowed PTRAN (NWW) to the 

phase-space source, non-weight windowed PTRAN (PS-NWW) and the ABFMC approaches using a coarse grid (CG) for the 
importance function and the phase-space source. 

 Mean MPV Median 20th Percentile 80th Percentile 
NWW vs. PS-NWW 14.65 12.60 14.15 12.11 18.89 
NWW vs. PS-Adjoint 148.90 144.04 148.60 129.46 200.20 
NWW vs. PS-OTF-FAIG 134.06 108.62 129.39 109.41 200.87 
NWW vs. PS-PC-FAIF 224.50 228.31 222.03 192.99 295.40 

 

The distributions shown in Figure 4.8 and Table 4-V and Table 4-VI show the same behavior as 

those for the primary point source in addition to the large benefit achievable from utilizing the 

phase space source. This source is realized do to the loss of need to transport particles through 

the bowtie attenuator where many particles are lost due to scattering in trajectories away from 

the detector plate. 

Figure 4.9 shows percent standard deviations for 2 minute run times for the phase-space source 

NWW and ABFMC in comparison to the full-primary source NWW. These plots are again very 

similar in shape and distribution to the full primary source, leading to the same conclusions, but 

show the great advantage of using the phase-space source for CBCT scatter projection 

simulations. Table 4-VII and Table 4-VIII list the distribution quantitative metrics allowing 

further comparison.   

WW
ikG
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Figure 4.7: Scatter plots of the percent standard deviation for each ik simulated detector pixel plotted against the scatter signal 
expected at the detector for the (green) non-weight windowed PTRAN, (blue) OTF-FAIG, (red) CADIS, and (cyan) PC-FAIG in 
the (a) FG and (b) CG importance grids following 2 min CPU Time 

  

Figure 4.8: The  distribution using the phase space source for the (a) FG and (b) CG importance grids. Also plotted here is 

the efficiency gain just from using the phase space source alone (magenta), and the peak is not shown to allow the shape of the 
other distributions to be seen. 

  

Figure 4.9: Scatter plots of the percent standard deviation for each ik simulated detector pixel plotted against the scatter signal 
expected at the detector for the (green) non-weight windowed PTRAN, (magenta) phase-space source NWW PTRAN, (blue)  
OTF-FAIG, (red) CADIS, and (cyan) PC-FAIG in the (a) FG and (b) CG importance grids. The ABFMC simulations utilized the 
phase space source for a 2 min CPU time 

WW
ikG

(a) (b)

(a) (b)

(a) (b)
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Table 4-VII: Quantitative Metrics for the percent standard deviation about the mean distribution following only 2 min of sngle 
CPU run time for the non-weight windowed PTRAN using the phase space source, (PS-NWW), adjoint function biasing using 
the phase-space source (PS-Adjoint), the on-the-fly forward adjoint importance generator using the phase space source (PS-OTF-
FAIG), and the pre-computed importance map from the forward adjoint generator using a phase-space source (PS-PC-FAIG). 
This was on the fine importance grid. 

 Mean MPV Median 20th Percentile 80th Percentile 
PS-NWW 20.95 20.27 20.67 18.88 22.86 
PS-Adjoint 6.04 4.93 5.33 4.83 6.23 
PS-OTF-FAIG 10.39 6.62 7.92 6.43 12.20 
PS-PC-FAIG 5.59 4.83 5.23 4.83 5.93 
 

Table 4-VIII: Numerical descriptors for the percent standard deviation about the mean distribution following only 2 min of 
simulation for the non-weight window PTRAN using the full primary source (NWW), the non-weight windowed PTRAN using 
the phase space source, (PS-NWW), adjoint function biasing using the phase-space source (PS-Adjoint), the on-the-fly forward 
adjoint importance generator using the phase space source (PS-OTF-FAIG), and the pre-computed importance map from the 
forward adjoint generator using a phase-space source (PS-PC-FAIG). This was on the coarse importance grid. 

 Mean MPV Median 20th Percentile 80th Percentile 
PS-NWW 20.95 20.27 20.77 18.88 22.86 
PS-Adjoint 6.88 5.83 6.33 2.53 7.22 
PS-OTF-FAIG 7.33 6.23 6.72 5.73 8.12 
PS-PC-FAIG 5.45 4.83 5.13 4.73 5.83 

 

4.4.4.3 Scatter Projections 

A visual comparison of the 2 min scatter projections for the (b) NWW, (c) CADIS, (d) PC-

FAIG, (e) PS-NWW, (f) PS-Adjoint, and (g) PS-PC-FAIG can be seen in Figure 4.10 compared 

with a low-uncertainty scatter projection (a).   



www.manaraa.com

 
 

73 
 

 

  

  

  

Figure 4.10: Scatter projections for the elliptical water cylinder studied for a (a) low-uncertainly, average 2%, (b) 2 min NWW, 
(c) 2 min CADIS, (d) 2 min PC-FAIG, (e) 2 min PS-NWW, (f) 2 min PS-Adjoint, and (g) 2 min PS-PC-FAIG. The signal is 
energy absorbed in keV. All images are with the same window and level 

(a)

(b) 

(c) 

(d) 

(e)

(f)

(g)
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4.5 Discussion 

In summary, I have shown that ABFMC is highly effective variance reduction strategy for the 

CBCT projection geometry, yielding 40-fold efficiency gains for PC-FAIG and Adjoint and 18-

fold gains for “on-the-fly” continually updated FAIG. Some important observations include the 

relatively marginal gains from the CADIS source biasing. Since there is not a strong coupling 

between the source and transport biasing in the CBCT projection geometry, the greatest gains are 

achieved through the pairing of the ABFMC transport biasing via weight windowing and the 

phase space source. The combination of PC-FAIG/Adjoint biasing and phase-space source 

boosts efficiency gains to 250 to 400-fold range relative to non-biased forward Monte Carlo 

using the primary point source. In Addition, the resolution of the spatial importance grid seems 

to have little impact on the overall gains achieved. This observation allows for more efficient 

DOM calculations and faster determination of * ( )g r  by the forward adjoint importance 

generator.  

The uncertainty data presented here has been for a 1024 768  pixel detector approximated as a 

160 120  grid. As stated previously, this approximation, followed by interpolation back to the 

original resolution, is permissible due to the low occurrence of high frequency content in the 

spatial scatter signal. In fact the grid resolution can be further reduced to a 40 30  detector array 

with little accuracy loss48. Under these circumstances, and if an average 5% uncertainty is 

acceptable in the computed scatter signal, use of a DOM computed adjoint function or an 

importance map pre-computed using the FAIG will produce a scatter projection in as little as 8 

sec. In comparison, the work completed by Mainegra-Hing et al59 would require around 38 sec 

for a similar calculation. To put this into perspective, a full 360 projections to be computed by 

the PS-NWW PTRAN would require roughly 13 hours of CPU time. If instead the PS-Adjoint or 
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PS-PC-FAIG were utilized, only 48 min would be needed to reach 5% uncertainty. By using cost 

effective parallel computing environments, this time would reduce linearly with the number of 

CPU cores used for parallel computation. For example, if an 8 CPU core workstation is 

available, only 6 minutes would be required to compute the 360 scatter projections for the 

geometry studied here. 

The full benefit from ABFMC is realized by using a pre-determined adjoint function, whether by 

DOM calculations or FAIG. Both these methods would require an additional computational 

burden that has the potential to offset gains achieved in computational efficiency. For example, 

the PARTISN coarse grid calculations took roughly 4 min per projection simulated. For clinical 

acceptance of DOM-based ABFMC implementations, then more efficient DOM solutions must 

be applied as well. Some ideas to increase the efficiency would be to implement adaptive mesh 

refinement, reduce the Sn order in connection with a first collision source, or by reducing the 

mesh sizes. On the other hand, Appendix D shows that the use of an importance map from a 

previously computed scatter projection can be reused for a different projection at a nearby angle. 

This suggests that DOM calculations will not need to be completed for every angle while a 

projection’s adjoint function is reused, thus reducing the computational burden of DOM 

solutions. Furthermore, Figure 4.11 shows the average efficiency gains achieved over a 360 

degree rotation using an average importance function computed using the FAIG for two 

preceding projections. In short, each projection uses an importance map generated as an average 

from the two projections preceding it, or over 8 degrees in this case. Using this strategy removes 

the computational burden of pre-computing an importance function while still reaping the 

additional benefits. The sinusoidal behavior of the efficiency gain over angle is due to the 
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increased and decreased effective radiological path-length as the source rotates around the 

phantom. FAIG is more efficient in regions of deeper penetration. 

 

Figure 4.11: The average efficiency gain using the forward adjoint 
importance generator for a pelvic phantom around a 360 degree 
rotation. Each projection uses an average importance function from the 
two projections preceding it. 

The study presented in this chapter was for a single cylindrical type water phantom mimicking 

the size of an adult head. The extensive study included as Appendix D extends the application of 

the forward adjoint importance generator to two additional geometries: a simulated head and 

body phantom. Future work should focus on expanding the application to more realistic patient 

geometries such as single and dual energy CT patient representations.  Furthermore, the effect on 

scatter projection statistical uncertainty on reconstructed image quality needs to be assessed so 

the optimal relationship between efficiency and quality can be ascertained. Another area of 

future work aimed at decreasing the amount of time required for CBCT scatter correction is to 

look at the effect on reconstructed image quality from under-sampling the scatter projection 

sonogram. The missing angular data in the sonogram could be recovered through interpolation. 

The relationship between image quality and level of under-sampling could be determined to find 

the optimal interval between MC computed scatter projections. 
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Lastly, CBCT scatter calculation efficiency is not the only barrier to improve image quality. It 

has been shown that after subtracting the scatter signal the measured projections, the scatter 

noise left behind decreases the contrast to noise ratio48, affecting low-contrast detectability. 

Effective and time efficient strategies to mitigate the scatter noise have resulted in notable 

improvements to reconstructed image quality45,108.  Any comprehensive CBCT scatter correction 

method must include some approach to correct for the residual scatter noise. Upon complete 

correction with a comprehensive CBCT reconstruction algorithm, one method to test corrected 

CBCT image quality would be to repeat Weiss et al’s47 study on physician contouring. 

Similar to the Chapters 2 and 3, the CPU time and efficiency gains reported here only 

incorporate radiation transport of one angle and not the time for variable initialization or 

geometry setup. In practice, multiple angles will be computed simultaneously (via parallel 

processing) and consecutively, initializing the geometry only once for an entire simulation. For 

the phantom geometries presented in this study, the initialization time was less than 1 second. 

4.6 Conclusion 

We have shown that adjoint-biased forward Monte Carlo (ABFMC) is a powerful tool for 

increasing the efficiency of Monte Carlo computed scatter projections for CBCT imaging. 

Additional work should focus more on additional phantom and patient geometries and 

incorporating the ABFMC approach in a comprehensive CBCT reconstruction package. 
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5. Discussion 

5.1 Correlated Monte Carlo 

Correlated Monte Carlo is able to reduce the maximum and mean uncertainty in anatomical 

regions of clinical interest in all circumstances investigated in our study. This shows that CMC is 

globally advantageous regardless of the small number of voxels that exhibit increased statistical 

uncertainty relative to UMC. Diminished gains were associated with inter-seed attenuation 

effects and anatomical regions that have radiological properties that vary substantially from the 

corresponding homogeneous environment.  

Comparing with other optimized codes, CMC, as implemented in PTRAN is the most efficient 

non-biased solution for brachytherapy model based dose calculations reported to date. CMC is 

able to compute accurate, HR patient-specific dose maps in fewer than 40 sec. Others have only 

been able to achieve such efficiency for lower-resolution spatial grids6,84-86. Although the 

techniques used to produce the previously reported times were accurate and more efficient than 

their predecessors, CMC is still stands out with a more than 8-fold efficiency advantage above 

the others.  

Further improvements in efficiency, with minimal loss to accuracy for anatomically realistic 

simulation environments, can be achieved through the ICMC approximation. Because of the 

immense efficiency gains from using ICMC relative to UMC allow the use of iterative treatment 

planning optimization to be clinically applied. Gains upward of 1500 for the 3.0 mm LR grids 

allow treatment planning optimization through the genetic algorithm96,97 to be computed in less 

than 7 min and 18 min for the breast and prostate cases, respectively, used in our study. 
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Additionally, the current cost-effectiveness of multi-CPU and multi-core computer architectures 

would further reduced these times through the application of parallel processing.  

Unfortunately, CPU-time is not the only barrier to clinical acceptance of model based dose 

calculation algorithms. There still remains the un-answered question of how to assign tissue 

elemental compositions to voxels within an organ for each individual patient. Difficulties arise 

from patient-to-patient anatomical variability and the lack of definitive experimental assessments 

of tissue elemental compositions. For example, volumetric studies of the breast show that the 

percentage of fibro-glandular tissue ranges from 5% to 65%11. Additionally, Hammerstein’s109 

study of mastectomy specimens showed that glandular and adipose tissues exhibit 8%-10% 

variations in compositions by weight of carbon and oxygen, which translate into 8%-15% 

deviations in the linear attenuation coefficient at 20 keV.  Recommended compositions of the 

prostate come from the ICRP Reference Man are based on a small number of studies completed 

prior to 1960 using only a few specimens which may not be representative of a larger patient 

population15. Variations in the elemental composition for prostate tumor specimens translate into 

8% uncertainties in the linear attenuation coefficient for the 20-30 keV range110.  

Future work towards clinical adoption of model-based dose calculation algorithms must focus on 

the unsolved problem of tissue composition uncertainties. The dual-energy CT methods proposed 

by Williamson et al92, Landry et al90, or Malusek et al91 are promising quantitative imaging 

methods to reconstruct the radiological properties of tissue with their corresponding energy 

dependence. 

The combination of fast and accurate model based dose calculations algorithms, as presented in 

this dissertation, and accurate elemental representation of patient tissues can lead to the correct 
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characterization of the dose-response relationship for low-energy brachytherapy leading to more 

positive patient outcomes. 

5.2 Adjoint Biased Forward Monte Carlo 

We have demonstrated that ABFMC is an effective variance-reduction strategy for the CBCT 

projection geometry. The combination of using a phase-space source with ABFMC transport 

biasing via weight windowing, either with DOM or PC-FAIG computed importance functions, 

can yield average gains of 250 and upward to 400 relative to the non-weight windowed forward 

Monte Carlo using the primary point source. To put this into perspective, a full set of 360 

projections for a 40 30 detector grid, requires roughly 325 hrs of CPU time for 5% statistical 

uncertainty, if computed by the non-weight windowed Monte Carlo using a primary point 

source. In contrast, DOM or PC-FAIG importance sampling in combination with the phase-space 

source, requires only 48 min for the same calculation.  

Furthermore, with the adoption of cost-effective parallel computing environments, for example 

with 8 CPU cores, only 6 minutes would be needed. Additional reductions could be also be 

gained from sampling scatter projections on a coarser angular grid and recovering the full 

angular signal spectrum through interpolating in sinogram space111. The relationship between the 

reconstructed image quality and computational efficiency could be assessed to find the optimal 

angular sampling interval. 

Likewise, the effect of scatter projection statistical uncertainty on reconstructed image quality 

needs to be assessed so that the optimal relationship between efficiency and quality can be 

ascertained. Colijn et al56 were able to recover smooth and accurate CBCT projections from 
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noisy data after applying an adaptive de-noising filter suggesting that 10% uncertainty would be 

acceptable.  

Lastly, any future work to adopt these methods in clinical reconstructed CBCT images must 

address the issue of increased projection relative noise that results from scatter signal 

subtraction48. While scatter subtraction has been shown to diminish cupping, streaking, and non-

uniformity artifacts, in general it does not improve the contrast-to-noise ratio48, a widely used 

surrogate for low contrast structure detectability. Several groups have introduced adaptive 

filtering45,108 or penalized statistical iterative reconstruction112 techniques that are able to reduce 

image noise without significant loss of spatial resolution. Any comprehensive CBCT scatter-

correction method must include an approach to edge-preserving noise reduction. 

5.3 Conclusion 

To conclude this dissertation, principled variance reduction strategies are powerful and effective 

tools for increasing the efficiency of low-energy Monte Carlo simulation, with only modest 

losses to accuracy in worst-case scenarios, for both therapeutic and diagnostic clinical 

applications. 
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6. My Contributions 

6.1 Correlated Monte Carlo 

 Consolidated two separate correlated Monte Carlo codes, one for analytical geometries 

and the other for patient CT defined geometries, into one single code.  

 Optimized the consolidated code to yield efficiency gains an order of magnitude above 

previous performance. 

 Expanded the phase-space source model to be generalized for all brachytherapy seed 

configuration.  

 Identified, isolated, and characterized a phenomenon within correlated sampling for 

heterogeneous histories to receive an inflated weight. It was this discovery that led me to 

propose and implement the homogeneous radiation transport to be completed in a 

homogeneous breast environment. 

 Performed all calculations and analysis presented in this work. 

6.2 Interpolated Correlated Monte Carlo 

 Incorporated the ICMC framework within PTRAN 

 Wrote the ability for ICMC to use spatially averaged cross-sections and local absorption 

properties instead of an assigned tissue mixture from ctcreate.  

 Identified and isolated the three sources of error in the ICMC methodology: inverse 

square law gradient effect, cross-section gradient effect, and the local absorption gradient 

effect. 
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 Proposed its application within treatment planning optimization algorithms. 

 Performed all calculations and analysis presented in this work. 

6.3 Adjoint Biased Forward Monte Carlo 

 Expanded PTRAN to include both CBCT and fan-beam CT simulation. 

o Programmed an expected track-length estimator for both the primary and scatter 

components of the projection signals. 

o Generalized the phase-space source model from brachytherapy to external beam 

geometry. 

o Restructured the ray-tracing routines for more general composite geometries of 

analytical objects and CT-defined patients. 

 Expanded the idea further from one of Dr. Jeffrey Williamson’s research grants. 

o I proposed that we use ABFMC for CBCT 

 Solved all problems related to hardware incompatibilities, which involved the re-writing 

the declarations and initializations of most variables, for the NJOY and TRANSX code 

systems (used to generate multi-group cross-section libraries for DOM calculations). 

 Successfully adapted and implemented the ABFMC infrastructure in PTRAN.  

o Set up the weight windowing in PTRAN. 

 Though this specifically targets the CBCT geometry, I programmed it to 

easily be utilized for the brachytherapy geometry as well. 

o Implemented the CADIS, adjoint, and forward adjoint importance generator 

approaches to ABFMC. 

 I adapted the forward adjoint importance generator concept from the 

weight window generator used in MCNP to help me understand the DOM 
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computed adjoint function, but it turned into an effective variance 

reduction strategy by itself. 

o Conceived and implemented the multiple-angle forward adjoint importance 

generator concept. 

o Obtained, installed, troubleshot, and learned to use PARTISN, NJOY, and 

TRANSX (from scratch) for discrete ordinate solutions to the forward and adjoint 

Boltzmann transport equation. 

 Performed all calculations and analysis presented in this work. 
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Using Correlated Sampling to Accelerate CT-Based Monte Carlo Dose Calculations 
for Brachytherapy Treatment Planning 

A. Sampson1, Y. Le2, D. Todor1, J. Williamson1 

1 Department of Radiation Oncology, Virginia Commonwealth University, Richmond, USA  
2 Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University, Baltimore, USA 

Abstract— The aim of this study was to assess the impact on 
efficiency and accuracy of a correlated sampling Monte Carlo 
simulation code for evaluating clinical brachytherapy dose 
distributions, accounting for tissue-composition and applicator 
heterogeneities. This code was built upon an extensively 
benchmarked Monte Carlo code, PTRAN_CCG and a CT-like 
cross-section map derived from patient single-energy CT im-
ages. Differences between PTRAN_CCG and the correlated 
code, expressed relative to the statistical uncertainty were 
found to be normally distributed with a standard deviation of 
1.00 and a mean of -0.109 indicating that the correlated and 
conventional Monte Carlo agree within statistical error. Cor-
related sampling increases efficiency by factors of 7.1, 9.1, and 
10.4, for greater than 20%, 50% and 90% of D90, respectively, 
for a 2x2x2 mm voxel grid.  

 
Keywords— Monte Carlo, brachytherapy, correlated sampling. 

I. INTRODUCTION  

Currently, LDR brachytherapy dose calculations are per-
formed using the TG-43 protocol [1], which assumes that 
patients are composed of liquid water and ignores seed-to-
seed attenuation and other applicator-shielding effects. 
Several studies have documented that tissue heterogeneities, 
inter-seed attenuation, and seed anisotropy significantly 
influence low-energy (125I or 103Pd) prostate seed im-
plants [2-4]. For example, Chibani et al [3] showed that 
these effects can influence clinical dose descriptors, e.g., 
D90, by as much as 10% in the prostate. They also showed 
that as little as 1% of calcified prostate tissue by weight can 
reduce D90 by as much as 8-10%.  

CT-based Monte Carlo (MC) codes can rigorously ac-
count for applicator-attenuation and tissue-heterogeneity 
effects which are ignored by conventional treatment plan-
ning systems (TPS). However, the CPU time-intensiveness 
of MC transport solutions has limited Monte Carlo applica-
tions in the clinical setting. For example, Carrier et al 
(2007) reported post-implant Monte Carlo dose calculations 
run times of 4 hrs on a cluster of 8 Intel Xenon 2.4 GHz 
CPU’s to give a statistical uncertainty of 0.1% in the V200. 
This is neither realistic for pretreatment planning nor for 
intraoperative plan adjustment. 

In this abstract, we describe implementation of a general 
variance reduction technique, correlated sampling, in a CT-
based MC brachytherapy dose-calculation engine. We in-
vestigate its accuracy and efficiency.  

II. METHOD AND MATERIALS 

A. Correlated Sampling Concepts 

We have previously described the correlated sampling 
theory in detail [5]. Conceptually, deviations from unit 
density and water composition (including applicators) are 
treated as a perturbation of the corresponding homogenous 
(unperturbed) system. Photon histories are generated for the 
unperturbed geometry and the same set of histories are ‘re-
scored’ by computing weight-correction factors to reflect 
the presence of the heterogeneities. In conventional MC, 
Dhet and Dhom are estimated from independent MC runs 
which must be statistically very precise to give a reliable 
estimate of homhetD D D  

( )corr uncor
hetV D V D 

, requiring many photon histories 

and long CPU times. In contrast correlated sampling scores 
D contribution for each simulated collision by subtracting 
the contributions made by each history to each voxel. Addi-
tionally the same set of histories is used for both homoge-
nous and heterogeneous geometries. Thus, the Dhet and Dhom 
estimates are strongly correlated. For small perturbations 
the random deviations from their expected values will be in 
the same direction resulting in a positive covariance [6]. 
The variance, V(Dcorr), of the estimate of Dcorr may be 
significantly less than the conventional (uncorrelated) 
methods: . However, a positive 

covariance cannot be guaranteed implying that correlated 
sampling could increase the variance depending on the size 
of perturbation.  

hom( ) (r uncorrV D )

If the homogenous dose, Dhom, can be obtained by deter-
ministic methods (e.g. 2D TG-43 formalism), the patient 
doses are calculated as corrections to those of the homoge-
nous geometry, , where 

, is the heterogeneity correction 

factor. The variance of the patient dose obtained in this 

*
hom
nonMC

hetD HCF D 
nonMC
hom1 /corrHCF D D  
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way, , may be significantly less than 

that of uncorrelated MC simulation .  

*( ) ( corr
hetV D V D  )

B. Implementation 

The correlated sampling technique described above was 
implemented in a CT-based MC dose calculation code, 
PTRAN_CT [7]. PTRAN_CT is a MC photon transport 
(MCPT) code designed specifically for fast brachytherapy 
dose calculation. It supports history-by-history uncertainty 
estimation and an optional phase-space source model. It 
also utilizes a fast ray-tracing algorithm by combining 
voxel-based modeling of patient anatomy with general 
complex combinatorial geometry (CCG) ray-tracing capa-
bility. The CCG models sources and applicators as set-
theoretical combinations of analytically described surfaces 
such as ellipsoids, cuboids, cylinders and planes. 
CTCREATE [8] was used to convert Single-energy CT data 
to voxel tissue assignment and density. Tissue compositions 
were taken from ICRU report 44[9] and cross sections were 
derived by a method previously described by Monroe et al 
[10].  

To simplify calculation of the weight correction factors, a 
simplified physical model of photon interactions with tissue 
was used that considers only free-electron Klein-Nishina 
scattering and photoelectric absorption with no characteris-
tic x-ray emission. The expected track length (ETL) scoring 
method [11] was used to calculate , and . corr

hetD hom
corrD corrD

To generate photon histories, a phase space model, which 
incorporates atomic relaxation, characteristic x-ray emis-
sion, and electron binding, of the source was used. Since the 
phase space model includes self-attenuation of the source in 
the homogeneous dose distribution, the difference between 
the homogeneous and heterogeneous does is lessened. This 
allows more heterogeneity to be treated as small perturba-
tions. Figure 1 illustrates that if a phase space model of the 
source is not used, then very limited efficiency gain and 
much more loss is observed since the heterogeneous pertur-
bations are too large for a positive covariance between ho-
mogeneous and heterogeneous dose distributions. Also, 
characteristic x-rays arising within the seed (e.g. by interac-
tions of primaries with the Model 6711 silver rod) are ac-
counted for to a first order approximation.  

C. Evaluating Accuracy and Efficiency 

A clinical permanent prostate-seed implant, consisting of 
78 Model-6711 I-125 seeds, was used to evaluate the accu-
racy and efficiency of PTRAN_CT_corr relative to the 
uncorrelated Monte Carlo code PTRAN_CT. The same 

patient geometry and scoring method (ETL) were used for 
both codes. 

 

 
Fig. 1 Efficiency gain/loss for each voxel is plotted against its correspond-
ing HCF. This was for a patient CT geometry with 78 seeds placed in an 
ideal configuration with no phase space model. 
 

 To quantitatively compare correlated MC dose distribu-
tions, , against conventional MC simulations, , 

the distribution of dose differences at each voxel ijk,

corr
ijkD uncorr

ijkD

ijkd , 

expressed as multiples of the combined statistical uncer-
tainty: 

 

2 2( ) / corr uncorr
ijk ijk

corr uncorr
ijk ijk ijk D D

d D D                                 (1) 

 

was examined. For purely statistical differences, the distri-
bution of ijkd  should be a Gaussian with mean of zero and 

standard deviation equal to 1.  
 The efficiency of a MC simulation is given 
by 1 ( )V T   , where V=2 is the variance and T is CPU 

time. For each individual voxel ijk, the efficiency gain, Gijk, 
between PTRAN_CT_corr and PTRAN_CT is defined as:  
 

   ( ) ( )uncorr uncorr corr corr
ijk ijk ijkG V D T V D T                         (2) 

 

Because  varies significantly with dose level and value 

of 
ijkG

ijkHCF , we computed the mean efficiency gains for those 

voxels with doses greater than 20%, 50% and 90% of D90 in 
uncorrelated simulation, denoted as G20, G50, G90. The effi-
ciency gains within clinical interest regions like prostate and 
rectum were also calculated.  
 2.5 million photon histories were used for both corre-
lated and uncorrelated PTRAN_CT for a 78 seed patient 
prostate implant on a single P4 1.9 GHz processor. The 
simulation volume was kept the same as 9×6.5×8 cm3 with 
voxel sizes of 2×2×2mm3, 1×1×3 mm3 and 1×1×1 mm3, 
respectively.  This yielded average percent standard devia-
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tions, /D hetD

900.5D  

, of 0.56% for 2×2×2 mm3 voxels for 

 for correlated MC simulations.  het
ijk D

III. RESULTS 

The distribution of  comparing correlated MC with 

uncorrelated PTRAN_CT is plotted in Fig. 2 along with a 
Gaussian fit with a mean of -0.109 and standard deviation 
of 1.012. The R-square value equal to 0.9999 demonstrates 
the goodness of the fit. The negative 0.109 standard devia-
tion shift with corresponding 3.5% combined statistical 
uncertainty only indicates 0.38% of average dose difference 
which is negligible.  

ijkd
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Fig 2 The distribution of  as defined in ijkd (1) with Gaussian fit 

 

The simulation time and the efficiency gains, G20, G50, 
G90 are listed in Table I. Efficiency gains of 4-15 are ob-
served. 

Table 1 

  Time (min) G20 G50 G90 

correlated 4.8 2×2×2mm3 
uncorrelated 3.0 

7.11 9.08 10.41 

correlated 6.6 1×1×3mm3 
uncorrelated 4.2 

9.43 12.94 15.76 

correlated 8.4 1×1×1mm3 
uncorrelated 5.4 

4.68 5.62 6.46 

    
 Although a phase space source model was used, an effi-
ciency loss was still observed in the regions of the pubic 
bone. Fig. 3 shows this effect along with reduced efficiency 
in regions of periprostatic adipose tissue. In relation to dose, 
it was found that most voxels that experienced an efficiency 
loss also received less than 50% of D90. Fig. 4 additionally 
shows that correlated sampling can reduce the percent stan-
dard deviation for regions receiving doses greater than 10 
Gy (6.25% of D90).  
    Finally, the distribution of efficiency gains in different 
anatomical regions as shown in Fig. 5 was studied. Within 
the prostate volume, the mean gain is 15 fold whereas in the 
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Fig. 3 2D Efficiency gain distribution from a mid slice in the coronal plane 

 
 

 
Fig. 4 Percent standard deviation vs. dose (1 1 mm3 voxel) 3 

 
rectal volume with doses greater than 50% of D90, corre-
lated sampling increases efficiency 7 fold on average. Table 
2 additionally shows the time required for various voxel 
sizes to achieve a standard deviation of 2% or less in the 
prostate and the rectum volume that receives dose greater 
than 50% of D90.  
 

Table 2 CPU time (in seconds) to achieve 2% SD for different voxel sizes 
using correlated sampling in PTRAN_CT_corr 

 Prostate Rectum (>50% D90) 

2×2×2mm3 17 24 
1×1×3mm3 33 50 
1×1×1mm3 180 240 

IV. CONCLUSION 

    Correlated sampling effectively reduces variance under 
many circumstances. However, regions of low dose or large 
dose perturbations can experience efficiency losses although 
in most cases the maximum dose uncertainty in the 3D 
calculation grid is reduced.  
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a b

c d

Fig 5 a. scatter plot of percent standard deviation vs. HCF for voxels within the prostate; b. histogram of efficiency gain for 
voxels within prostate; c. scatter plot of percent standard deviation vs. HCF for voxels within rectum; d. histogram of efficiency 
gain for voxels within rectum volume that receives >50% of D90. 
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Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to

improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss

of accuracy.

Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to

compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT

imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedi-

cated breast cone-beam CT patient exam. CMC tallies the dose difference, DD, between highly

correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry

histories were derived from photon collisions sampled in a geometrically identical but purely ho-

mogeneous medium geometry, by altering their particle weights to correct for bias. The prostate

case consisted of 78 Model-6711 125I seeds. The breast case consisted of 87 Model-200 103Pd

seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC

were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency

gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that

received minimum doses greater than 20%, 50%, and 90% of D90, as well as for various anatomical

regions.

Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and

0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1� 1� 1 mm3

dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains

within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the

voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was

shown that efficiency losses were confined to low dose regions while the largest gains were located

where little difference exists between the homogeneous and heterogeneous doses. On an AMD

1090T processor, computing times of 38 and 21 sec were required to achieve an average statistical

uncertainty of 2% within the prostate (1� 1� 1 mm3) and breast (0.67� 0.67� 0.8 mm3) CTVs,

respectively.

Conclusions: CMC supports an additional average 38–60 fold improvement in average efficiency

relative to conventional uncorrelated MC techniques, although some voxels experience no gain or

even efficiency losses. However, for the two investigated case studies, the maximum variance

within clinically significant structures was always reduced (on average by a factor of 6) in the thera-

peutic dose range generally. CMC takes only seconds to produce an accurate, high-resolution, low-

uncertainly dose distribution for the low-energy PSB implants investigated in this study. VC 2012
American Association of Physicists in Medicine. [DOI: 10.1118/1.3679018]

Key words: brachytherapy, correlated sampling, Monte Carlo, TG-43

I. INTRODUCTION

The current standard of practice for brachytherapy dose

computation is the lookup table-based AAPM Task Group

43 protocol (TG-43),1 which assumes that patients are homo-

geneous water spheres and neglects seed-to-seed attenuation

and other applicator-shielding effects. In response to numer-

ous studies2–10 documenting significant dosimetric effects

caused by tissue heterogeneities and interseed attenuation, the

AAPM formed a task group (TG-186) to address this issue.11

For example, in 125I and 103Pd prostate permanent seed

brachytherapy (PSB) implants, tissue heterogeneities and

interseed attenuation reduceD90 (minimum dose delivered to

90% of the treatment volume, CTV)and V200 (volume

receiving at least 200% of the prescribed dose) in postim-

plant dose evaluation by as much as 13% (Refs. 2–6 and 9)

and 7% (Ref. 4), respectively. Furthermore Chibani et al.
showed that the presence of calcifications constituting

1%–5% of the prostate mass decreased D100 by as much as

58% (Ref. 2). For a 125I PSB simulated breast implant (50%

mammary gland—50% adipose by mass), a decrease in D90

of 10.3% was observed.10 In addition, the authors demon-

strated that higher volumes of adipose tissue, relative to

mammary glandular tissue, increased this effect. Overall,
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these studies show that dose to bony/calcified tissues and

adipose tissues differ by as much as a factor of two from

absorbed dose to water in the 15–40 keV energy range.

Three classes of model-based dose calculation algorithms

have been proposed to address the deficiencies of TG-43:

collapsed-cone superposition-convolution (CCSC),12,13 dis-

crete-ordinate finite-element methods (DOFE),14 and Monte

Carlo simulation (MC). Carlsson-Tedgren et al.15 has shown

the efficacy of using CCSC for accurate subminute brachy-

therapy dose calculations, but to date their studies have been

limited to simple applicator scatter corrections and not

applied to patient-specific treatment planning. Recently,

Varian Medical Systems released Acuros
VR

,16 a radiation-

therapy specific rewrite of the DOFE code ATTILA
VR

(Ref. 14) within its BrachyVisionTM planning software. Acur-

oscan compute most high dose-rate (HDR) brachytherapy

dose distributions in fewer than 10 min. Deterministic solu-

tions offer substantial speed enhancements, but are subject to

systematic bias, e.g., ray-effects, due to overly coarse discre-

tization of the radiation transport phase-space. For a single
192Ir source in homogeneous medium, Zourari et al.16 found

differences between Acuros and MC less than 1% in most

voxels, illustrating that DOFE parameters can be tuned to

produce accurate results with reasonable computing times

within a certain problem domain.17

CT-based MC methods can also be applied to both

applicator-attenuation and tissue-heterogeneity effects for

both low and high energy brachytherapy but unlike DOFE

and CCSC, give rise to statistically noisy solutions that are

generally unbiased, i.e., converge to the exact unbiased solu-

tion of the transport equation. However, the central process-

ing unit (CPU) time-intensiveness of MC transport solutions

has limited their use in the clinical setting5 until recent

advent of accelerated MC codes.18 Although these codes can

compute dose distributions in fewer than 5 min, such per-

formance is clinically marginal since treatment planning

optimization routines require the dose distribution to be

computed multiple times.19–21 To overcome this limitation,

additional sophisticated variance reduction techniques must

be employed to further reduce the CPU time to achieve clini-

cally acceptable uncertainties on cost effective hardware.

Due to the limitations imposed by current DOFE and MC

solutions, there is still need for an efficient, robust, and accu-

rate general purpose brachytherapy dose calculation engine

that overcomes the deficiencies of TG-43.

In this study we describe the implementation of a sophis-

ticated and general variance reduction technique called cor-

related sampling.22,23 We believe this to be first application

of correlated sampling Monte Carlo (CMC) to CT-based

brachytherapy dose calculation in clinically realistic geome-

tries. Specifically, we investigate its accuracy and efficiency

for two patient case studies.

II. METHODS

II.A. Correlated Sampling

To aid the reader, the symbols and acronyms used in this

paper are defined in Table I. Correlated sampling was first

proposed for accelerating MC brachytherapy dose calculations

by Hedtjärn et al.22 who demonstrated the potential of order-

of-magnitude efficiency gains in simple two-dimensional geo-

metries. Since their paper described the correlated sampling

theory in detail,22 only a brief summary will be given here.

Rather than computing absorbed dose directly, CMC estimates

the dose difference between heterogeneous and homogeneous

geometries on a voxel-by-voxel basis. Conceptually, deviations

from unit density water composition (including applicators and

tissue composition heterogeneities) are treated as perturbations

of the corresponding homogenous (unperturbed) system. This

is done by randomly sampling each photon history, consisting

of collision sequence, bhom
n ¼ ðrn;En;Xn;W

hom
n Þ, from the

photon-source and transition-kernel probability density func-

tions (PDFs) characteristic of purely homogeneous geometry.

In this nomenclature, n denotes order of scattering within the

history (n¼ 0 for primary); rn denotes the nth interaction loca-

tion; and En, Xn, and Whom
n denote the energy, direction, and

statistical weight of the photon leaving rn, respectively. To

score the dose difference between heterogeneous and homoge-

neous geometries, a corresponding heterogeneous geometry

history �bhet
n ¼ ðrn;En;Xn;W

het
n Þ, is constructed that utilizes

the same sequence of collision sites and emergent directions

and energies, but a different weight correction factor, Whet
n .

The weight correction factor is designed to eliminate the

bias due to representing photon transport in the heterogene-

ous geometry by a sequence of histories derived from the ho-

mogeneous transport and scattering kernels and is given by

Whet
n ¼ Whom

n � Phetðbhom
0 ; :::; bhom

n Þ
Phomðbhom

n ; :::; bhom
n Þ

; (1)

where Pvðbhom
0 ; :::; bhom

n Þ is the probability of sampling the

history bhom
0 ; :::; bhom

n in geometry v. To simplify calculation

of Whet
n , a free-electron Compton scattering model that

neglects characteristic x-ray emission and coherent scatter-

ing is assumed. For the distance between 0 and 10 cm from a

model 6711 125I seed, the Klein-Nishina scatter approxima-

tion has been shown to support dose estimates that agree

within 1% of that delivered in low-Z media by an incoherent

and coherent scatter physics model.24 Because �bhet
n and bhom

n

use the same sequence of collisions to score dose, their re-

spective dose tallies are tightly correlated. In practice, this

correlation is exploited by scoring the dose difference

Ddc
ijk;m;n ¼ f het

ijk ð
�bhet

m;nÞ� f hom
ijk ðbhom

m;n Þ; (2)

where m and n denote history number and order of scatter,

respectively; ijk denote the voxel indices along the x, y, and

z axes, respectively; f v
ijk is the scoring estimator for geometry

v; and Ddc
ijk;m;n represents the dose difference between the

heterogeneous and homogeneous dose tallies. The final sam-

ple mean, obtained by summing over interactions within

each history and averaging over histories, is given by

DD
c

ijk ¼
1

N

XN

m¼1

XMm

n¼1

Ddc
ijk;m;n: (3)

The heterogeneous dose, �Dhet;c
ijk is an estimate of the true

mean
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�Dhet;c
ijk ¼ Dhom

ijk � HCF
c

ijk;where HCF
c

ijk ¼ 1þ DD
c

ijk=Dhom
ijk

¼ 1þ DD
c

ijk=DTG43
ijk ; (4)

where the symbols with macron (over line), e.g., D
het;c

ijk denote

sample means derived from a finite set of histories as in Eq.

(3), and the corresponding macron-less symbol, Dhet
ijk , denotes

the corresponding unbiased “true” value. The heterogeneous

correction factor (HCF) is defined as HCFijk ¼ Dhet
ijk =Dhom

ijk ,

and the corresponding CMC estimate is given by HCF
c

ijk

¼ D
het;c

ijk =Dhom
ijk . D

het;u

ijk is the sample mean of heterogeneous

dose obtained from traditional, uncorrelated MC (UMC)

methodology and, unlike �Dhet;c
ijk , is assumed to be an unbiased

estimator of Dhet
ijk . We assume that Dhom

ijk can be closely

approximated by a noiseless and accurate fast deterministic

calculation: in our study, the TG-43 formalism was used:

Dhom
ijk ¼ DTG43

ijk as illustrated in Eq. (4). Since DTG43
ijk can be

known with negligible statistical uncertainty, it follows that22

V D
het;c
ijk

� �
¼ V DD

c

ijk

� �
� V D

het

ijk

� �
; (5)

where V is the variance, provided that the correlation

between �bhet
n and bhom

n remains high. However, a positive

covariance cannot be guaranteed,25 implying that efficiency

decreases are possible given circumstances where the corre-

lation between the homogeneous and heterogeneous histories

breaks down. If such circumstances exist throughout the

treatment volume, the homogeneous water geometry may be

replaced by an average tissue-volume composition that

would decrease the spread of HCF values, thus increasing

the correlation between �bhet
n and bhom

n . Such areas may

include those that contain large volumes of adipose tissue,

such as the breast. With this alteration, the needed TG-43 pa-

rameters could be recomputed for such nonaqueous homoge-

neous media with available Monte Carlo tools, enabling use

of TG-43.

II.B. Implementation

The correlated sampling technique, described above, was

implemented as an option within the more general CT-based

MC dose calculation code, PTRAN_CT, which is a member

of the PTRAN code family developed by Williamson and

colleagues.7,8,23,26–28 PTRAN_CT is a MC photon-transport

code designed specifically for fast brachytherapy dose calcu-

lation, utilizing several novel variance reduction strategies

(noted below) previously developed by Chibani and Wil-

liamson2 within a different code family. Since secondary

electrons are not transported, energy deposition is assumed

to occur locally when an ionizing event occurs. In contrast to

PTRAN_CT CMC option, the uncorrelated MC (UMC)

PTRAN_CT option uses a more complete collisional physics

model, including characteristic x-ray emission following

photoelectric absorption, electron binding corrections to

Compton scattering, and coherent scattering. Both the

PTRAN_CT UMC and CMC options support history-by-his-

tory uncertainty estimation29 and an optional phase-space

source model.2 A fast ray-tracing algorithm is used to track

photons through a voxel-based patient anatomy model and

through seeds and applicators based upon a general complex

combinatorial geometry (CCG) modeling system.30 Voxel

indexing,2 which restricts CCG ray-tracing to those modeled

structures that intersect voxels along the direct path of the

TABLE I. Symbols listed in order of appearance.

DD Dhet � Dhom, the difference between the dose to the heterogeneous and homogeneous media

bhom
n Photon history phase-space vector at collision n sampled assuming a purely homogeneous surrounding media

N Order of scatter

rn Position of the nth interaction

En Energy leaving rn

Xn Trajectory leaving rn

Whom
n Weight of the photon leaving rn in the homogeneous media

�bhet
n Photon history phase-space vector at collision n sampling assuming a purely homogenous surrounding media,

but having an altered weight correction factor to account for heterogeneities

Whet
n Weight of the photon leaving rn in the heterogeneous media

Pvðbhom
0 ; :::; bhom

n Þ The probability of sampling the history bhom
0 ; :::; bhom

n in geometry v
Ddc

ijk;m;n The dose difference between scores to voxel ijk from �bhet
n and bhom

n for interaction n in history m

N The total number of histories

Mm The number of interactions within history m

f v
ijk Scoring estimator for geometry v
DD

c

ijk The sample mean of DD obtained by averaging
PMm

n¼1

Ddc
ijk;m;n, sum over all interactions within a history, over all N histories.

�Dhet;c
ijk An estimate of the true mean, �Dhet;u

ijk
�Dhet;u

ijk A sample mean of the true mean, Dhet
ijk

Dhet
ijk The true, “unbiased” value for the dose to ijk to the heterogeneous media

HCF The heterogeneous correction factor defined as the ratio between Dhet and Dhom

HCFijk Dhet
ijk =Dhom

ijk , for voxel ijk

HCF
c

ijk D
het;c
ijk =Dhom

ijk
�Dhet;u

ijk Sample mean of heterogeneous dose to voxel ijk through means of UMC, and is an unbiased estimator of Dhet
ijk

DTG43
ijk AAPM TG-43 solution to homogeneous dose to voxel ijk

V(v) The variance of enclosed value, v
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photon, greatly improves the efficiency of photon tracking in

this hybrid geometry. The expected track-length (ETL)

scoring method was used by both the CMC and

UMC PTRAN_CT runs to further reduce variance.22

An in-house TG-43 computation engine was used to com-

pute DTG43
ijk . To ensure that voxel averaging effects will not

confound comparison of �Dhet;u
ijk to �Dhet;c

ijk , our code integrates the

TG-43 dose-at-a-point distribution over each voxel, excluding

any voxel subvolumes partially occupied by brachytherapy

seeds, the same convention used by the PTRAN_CT ETL

implementation. To compare Monte Carlo output with TG-43

calculations, the DSk (the mean air-kerma strength per simu-

lated disintegration24) values used for 103Pd Theragenics

model-200 and 125I model 6711 were 0:731cGy � cm2=mCi � h
(Ref. 8) and 0:7559cGy � cm2=mCi � h (Ref. 7), respectively.

II.C. Patient Cases

Two patient CT image sets are used to evaluate the accu-

racy and efficiency of CMC relative to UMC. The first case

is a simulated 103Pd PSB breast implant designed as recom-

mended by Pignol et al.31 High-resolution images (0.335�
0.335� 0.4 mm3 voxels) of a patient’s right breast in pend-

ant geometry were obtained on a dedicated cone-beam CT

imaging system.32 Using a method previously described33,34

six tissue types were automatically segmented: skin, chest

wall muscle, air, adipose, and two different mammary gland

tissues with differences in density. Tissue compositions are

taken from Woodard et al.35 where the low density glandular

tissue was assigned the composition of “mammary gland 1,”

while elemental compositions of “mammary gland 2” and

“mammary gland 3” were averaged and assigned to higher

density glandular tissue. The CTV is contoured as a 1 cm

isotropic expansion of a simulated spherical lumpectomy

cavity (2.4 cm diameter) having the average CTV dimen-

sions reported by Pignol et al.’s study with a CTV volume

of 44.6 cc. An implant consisting of 87 Model 200 seeds

with air-kerma strengths of 1.590 U (U ¼ 1 lGy �m2=h) was

designed to deliver a prescribed D100 dose of 90 Gy to the

CTV using a commercial treatment planning system (Varian

VeriSeed 8.0). Because of the high adipose tissue-volume in

the breast, rather than using liquid water for computation of

Dhom
ijk via the TG-43 method, we utilized a homogeneous av-

erage breast composition36 medium consisting of 85% adi-

pose and 15% fibroglandular tissue to reduce the range of

HCF values, and hence, the decorrelation of heterogeneous

and homogeneous photon histories.

The second case consisted of a postimplant CT of a PSB

patient with an 82 cm3 prostate implanted with 78 Model-

6711 125I seeds with air-kerma strengths 0.636 U/seed and a

prescribed D100 of 145 Gy. VariSeed was used to identify

seed coordinates in the postimplant CT. A modified version

of CTCREATE, taken from the DOSXYZNRC (Ref. 37)

code family, was used to convert single-energy CT intensity

data to voxel-specific tissue composition and density assign-

ments. Post CTCREATE, streaking artifacts in the postim-

plant prostate CT were partially mitigated by assigning

ICRU adult muscle to voxels within the prostate with attenu-

ation coefficients at 28 keV outside the allowed window of

[0.3716 cm�1, 0.4544 cm�1] corresponding to the range of

soft tissue assigned within the prostate. While this method

eliminates the seeds and their associated artifacts from the

CT images, the seeds themselves were modeled analytically

using PTRAN’s CCG capability and the VariSeed coordi-

nates. Tissue compositions were taken from ICRU report 44

(Ref. 38), and cross sections derived as previously described

by Monroe et al.8

For both patient studies, the phase-space source model

was used. As described previously,2,23 in the phase-space

source model a single-seed Monte Carlo simulation (based

on the full collisional physics model and detailed CCG

model of the seed structure), is performed to transport pri-

mary and scattered photons to the surface of the seed’s tita-

nium capsule. For each of the simulated histories, the

resultant state vectors, b0, are saved in the phase-space file.

During PTRAN_CT execution, primary photons are

“sampled” by sequentially reading b0 vectors from the

phase-space file and using them to launch histories from the

surfaces of randomly selected seeds. This improves the cor-

relation between �bhet
n and bhom

n by eliminating attenuation

and scattering of primary photons within the seed structure.

Using the postimplant CT coordinates, the prostate case

dose was computed in a rectangular region of interest (ROI)

of 10.2� 15.0� 7.2 cm3 with 1� 1� 1 mm3, 2� 2� 2

mm3, and 3� 3� 3 mm3 voxel dimensions for both CMC

and UMC. The simulated breast implant ROI had dimen-

sions of 10.47� 10.47� 7.44 cm3with dose grid voxel sizes

of 0.67� 0.67� 0.8 mm3and 1.34� 1.34� 1.6 mm3. Hun-

dred million photon histories were simulated by both CMC

and UMC simulations. We denote these results as low-

uncertainty (LU) CMC (LU-CMC) and LU-UMC, respec-

tively. To minimize confusion, the phrase “finest grid” refers

to 1� 1� 1 mm3 and 0.67� 0.67� 0.8 mm3 voxel sizes for

the prostate and breast cases, respectively.

II.D. Evaluating Efficiency and Accuracy

MC simulation efficiency is defined by �ijk ¼ 1=ðr2
�Dgk
� TÞ

where T is CPU time required to achieve the sample standard

deviation about the mean (SDM), rD (generally expressed as

percentage of the corresponding local mean, D). For each

individual voxel ijk, the efficiency gain, Gijk, of CMC rela-

tive to UMC is given by

Gijk ¼
r

D
het;u

ijk

� Thet;u

r2

D
het;c

ijk

� Thet;c
: (6)

Because Gijk varies significantly with �Dhet
ijk and HCFijk, the

mean efficiency gain was computed separately for ROIs con-

taining voxels receiving doses greater than 20%, 50% and

90% of D90, denoted as G20, G50, G90, respectively. Addition-

ally, the percentage of voxels in each ROI enjoying a positive

gain in efficiency (Gijk > 1) was tallied. Finally, mean effi-

ciency gains within the prostate (CTV), the urethra, and rec-

tum ROI subvolumes, for voxels receiving doses greater than

50% of the D90,were calculated. To test the feasibility of

1061 Sampson, Le, and Williamson: Fast patient-specific brachytherapy calculations via correlated sampling 1061

Medical Physics, Vol. 39, No. 2, February 2012



www.manaraa.com

CMC-based dose planning, the time required for CMC to

achieve an average percent SDM of 2% within the CTV,

Thet;c
2%SDM

, was estimated, assuming that variance is inversely

proportional to the MC CPU time. The UMC and CMC per-

cent SDMs vs dose and HCF on a voxel-by-voxel basis were

compared for the ROI’s after using Thet;c
2%SDM

for CPU runtime.

To quantitatively evaluate accuracy of �Dhet;c
ijk relative to

�Dhet
ijk benchmarks the distribution of dose differences at each

voxel ijk receiving more than 50% of the prescribed dose is

evaluated, expressed as multiples of the combined absolute

statistical uncertainty

zijk ¼ �Dhet;c
ijk � �Dhet;u

ijk

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

D
het;c

ijk

þ r2

D
het;u

ijk

r !
� 1: (7)

In this expression, r represents the absolute SDM. In the ab-

sence of any systematic error or bias, the distribution of zijk

should be a Gaussian with a mean of zero and standard devi-

ation of 1. To separate the systematic and random compo-

nents of CMC error, the zijk frequency histogram was fit to

the model proposed by Kawrakow et al.39

f ðzÞ ¼ 1ffiffiffiffiffiffi
2p
p a1e�

ðz�b1Þ2
2

� �
þ a2e�

ðz�b2Þ2
2

� ��

þð1� a1 � a2Þe�
�z2

2

i
; (8)

where f(z)dz is the probability that a voxel has a normalized

error in the interval ðz; zþ dzÞ. This model includes two nor-

mally distributed systematic errors with means of bi, stand-

ard deviations of 1.0, and probability of occurrence ai, where

i¼ 1, 2 with the remaining voxels exhibiting only random

errors described by a Gaussian with zero mean and unit

standard deviation.. The quantity ai represents the fraction of

voxels that exhibit a mean systematic error bi. The percent-

age difference between LU-CMC and LU-UMC correspond-

ing to bi is estimated by taking the product of bi and the

average percent SDM within investigated region. Fitting was

performed using MATLAB’s curve-fitting toolbox (MATLAB

7.10.0 (R2010a), Trust-Region algorithm utilizing the least

absolute residuals technique for robust fitting).

III. RESULTS

The finest grid with 100 million histories resulted in a

mean percent SDM of 0.18% and 0.62% for prostate and

0.087% and 0.77% within the breast for LU-CMC and LU-

UMC, respectively, within regions that receive greater than

50% D90. Corresponding run times on an AMD Phenom II

X6 1090T processor utilizing only one core were 4.4 and

3.95 h for prostate LU-CMC and LU-UMC, respectively,

and 3.84 and 2.33 h for the breast case. This very large num-

ber of photon histories was simulated in order to minimize

statistical fluctuations.

For the prostate case, Table II shows that nearly all voxels

are affected by a very small 0.003% mean systematic error

while 0.1% voxels have a larger error of 0.5%. For the breast

case, approximately 5% of the voxels have mean systematic

errors of 0.04%–0.1%. These data demonstrate that system-

atic discrepancies between the two codes are very small, i.e.,

that CMC accurately reproduces UMC results. The distribu-

tion of zijk comparing LU-CMC with LU-UMC for all voxels

that receive greater than 50% D90 is plotted in Fig. 1 for both

TABLE II. Best fit parameters values of the f ðzÞ distribution, Eq. (8), for the breast and prostate plans.

Corresponding Error

Prostate Breast Prostate Breast

a1 0.9993 0.05124 3.2� 10�3 % underestimation in

99.9% of the voxels

0.039% underestimation in 5.1% of the voxels

b1 �0.01822 �0.4502

a2 0.0006508 0.002814 0.54% overestimation in 0.065% of the voxels 0.099% underestimation in 0.28% of the voxels

b2 3.047 �1.1318

FIG. 1. Plots of zijk distributions, dots, for prostate (a) and breast (b) with their corresponding fits, line. Fit parameters are in Table II.
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the prostate and breast implants along with fits to Eq. (8).

Corresponding fit parameters and percentage errors are tabu-

lated in Table II. The R-squared values for prostate and

breast implants were 0.99995 and 0.999985, respectively,

and clearly demonstrate a good fit. Since the UMC calcula-

tions utilized the full collisional physics model, these results

demonstrate that the simplified free-electron scattering

model used by CMC does not introduce significant system-

atic errors.

Figure 2 shows that the Gijk distributions with respect to
�Dhet

ijk and HCFijk have different shapes for the breast and

prostate geometries, highlighting the sensitivity of CMC

results to underlying implant and tissue geometry differen-

ces. For the prostate implant [Fig. 2(a)], the Gijk distribution

is sharply peaked around unity HCF; rapidly falls off with

larger and smaller values; and displays a large range (a fac-

tor of five smaller and larger than unity). Prostate HCF val-

ues range from about 0.1 in areas shielded by the pelvic

bone to about 10 inside the pelvic bone. Large deviations of

HCF from unity are associated with reduced efficiency gain

or even efficiency losses. In contrast, breast HCF values

have a much smaller range [Fig 2(b)], ranging from about

0.7 to 1.8, with the majority of voxels falling within 0.10 of

unity. This is due to using a weighted average of glandular

and adipose media for the homogeneous medium. Figure

2(b) also reveals a broader maximum near unity HCF with

very few voxels experiencing even modest efficiency losses

in the limited HCF range of this body site. In contrast, the

distributions of Gijk as a function of dose have a much more

similar appearance, except that almost no breast PSB voxels

experience efficiency losses. In both sites, the largest effi-

ciency gains are generally doses near or exceeding D90 while

the average efficiency gain systematically decreases with

decreasing dose.

Tables III and IV present efficiency summary statistics

for the two clinical sites. For the prostate plan, all the voxels

within the CTV experience an increase in runtime efficiency

with an average Gijk of 38.1 for the finest voxel grid. In con-

trast, the breast plan shows alarger average Gijk of 59.8 with

99.9% of the voxels within the CTV experiencing an effi-

ciency gain for the finest grid. The average Gijk is larger for

the breast case due both to the smaller range of HCF correc-

tions and the fact that an average breast medium was used

for the homogeneous geometry, which more closely models

the heterogeneous breast than water does the prostate geom-

etry (See discussion below).

FIG. 2. Scatter plot of the efficiency gain vs the HCF for all voxels in the prostate (a) and breast (b) geometries; scatter plot of the efficiency gain vs the deliv-

ered dose (Gy) for all voxels in the prostate (c) and breast (d) geometries. The area outlined in circumscribes the voxels originating from the CTV.
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The assumption that Monte Carlo variance estimates are

inversely proportional to the square-root of runtime, suggests

CPU times, Thet;c
2%SDM

, of only 39 sand 21 s are necessary for

prostate and breast CTVs, respectively, to achieve 2% statis-

tics. The CMC and UMC dose distributions were recom-

puted using the smaller number of histories corresponding to

these rescaled Thet;c
2%SDM

runtimes. Figures 3 and 4 show the re-

sultant distributions of %SDM with respect to �Dhet;u
ijk for the

clinical ROI regions receiving greater than 50% of D90. The

UMC simulations yielded mean %SDM’s of 11.3%, 5.1%,

and 4.6% for the bladder, rectum and seminal vesicles,

respectively. These plots exhibit a dramatic separation

between CMC and UMC statistical uncertainties with tightly

grouped distributions with moderate dependence on dose.

Despite the fact that some voxels experience little efficiency

gain or even efficiency losses, for a fixed CPU time,

CMC always reduces uncertainty within a given organ,

generally by a factor of 6. The UMC SDM distributions are

consistently broader than for CMC for all structures shown,

except for the rectum where the SDM spread appears to be

equal. Figure 5 shows a central slice through the prostate

plan with isodose curves from LU-UMC with and CMC

using Thet;c
2%SDM

for run time. The differences between them

are difficult to distinguish visually.

IV. DISCUSSION

CMC effectively reduces variance under many circum-

stances. However, regions with low dose or large dose per-

turbations due to tissue composition heterogeneities can

experience diminished gains or even efficiency losses in

both breast and prostate plans. Theoretical analyses of CMC

indicate that, while the correlated sampling algorithm leads

to unbiased results, there is no guarantee of improved effi-

ciency.25 This result is consistent with Hedtjärn’s study22

who realized efficiency gains of four orders of magnitude

across a wide keV energy spectrum for a simple uniform

water geometry with different single cylindrical heterogene-

ities. Despite efficiency losses in a small number of voxels,

both cases investigated by our study demonstrated reduction

of the maximum and mean dose-uncertainty in clinically rel-

evant regions of interest. Voxels experiencing CMC effi-

ciency loss generally already have UMC standard deviations

well below the mean and maximum UMC standard devia-

tions. Thus, CMC is globally advantageous despite the small

number of voxels that exhibit increased statistical uncer-

tainty. The prostate plan demonstrates the greatest loss of

CMC efficiency advantage in regions where HCF deviates

from unity by more than 20%. Both cases also show that

regions with little dose deposition have a higher tendency to

experience an efficiency loss. These regions include those

TABLE III. Average efficiency gain for the breast and prostate plans for various ROI’s along with the estimated time required to compute Monte Carlo dose to

achieve 2% mean standard deviations about the mean. For the prostate plan, data are given for three different voxel dimensions: (1.0 mm)3, (2.0 mm)3, and

(3.0 mm)3 relative to uncorrelated Monte Carlo. Percentages within parentheses are the percentage of voxels within the corresponding structure that experience

and efficiency gain greater than unity. The times listed are estimated to achieve average 2% standard deviation about the mean within corresponding structure

at all dose levels.

Breast MC Type Time to achieve mean %SDM of 2% Average Efficiency Gain (0.67 mm)3

Lumpectomy Cavity. UMC 16.9 min 55.7 (100%)

CMC 20.2 s

CTV UMC 18.7 min 59.8 (>99.9%)

CMC 21.1 s

Prostate Time Average Efficiency Gain

MC Type (1.0 mm)3 (2.0 mm)3 (3.0 mm)3 (1.0 mm)3 (2.0 mm)3 (3.0 mm)3

Prostate (CTV) UMC 15.3min 1.59 min 30.9 s 37.1 (100%) 44.7 (100%) 41.6 (100%)

CMC 38.6 s 3.3 s 1.1 s

Bladder UMC 113 min 12.0 min 4.0 min 12.3 (99.3%) 13.5 (99.0%) 12.7 (97.5%)

CMC 16.5 min 1.63 min 38.9 s

Rectum UMC 45.2 min 4.55 min 1.44 min 14.0 (99.7%) 14.9 (99.1%) 14.3 (98.7%)

CMC 4.7 min 27.4 s 8.9 s

Seminal Vesicles. UMC 29.1 min 3.02 min 56.9 s 12.6 (99.4%) 14.0 (99.8%) 13.3 (99.3%)

CMC 3.5 min 17.9 s 6.23 s

Urethra UMC 18.0 min 1.90 min 36.4 s 43.2 (100%) 54.0 (100%) 54.1 (100%)

CMC 38.9 s 3.49 s 1.13 s

TABLE IV. G20,G50, and G90 (average efficiency gain for voxels receiving

greater than or equal to 20%, 50%, and 90% of the prescribed dose, respec-

tively) for the breast and prostate plans. The prostate also shows values for

larger voxel dimensions (2mm and 3mm). The percentage of the voxel con-

tained in these regions that experience and efficiency gain are contained

within the parentheses.

Breast G20 G50 G90

0.67� 0.67� 0.8 mm3 44.8 (>99.9%) 55.0 (100%) 54.9 (100%)

Prostate

1.0� 1.0� 1.0 mm3 20.3 (98.2%) 26.8 (99.7%) 33.6 (>99.9%)

2.0� 2.0� 2.0 mm3 23.4 (97.8%) 31.8 (99.7%) 40.5 (100%)

3.0� 3.0� 3.0 mm3 22.2 (97.7%) 30.0 (99.8%) 38.1 (100%)
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shielded by the pelvic bone and those regions outside the

CTV in the breast where decorrelation between the homoge-

neous and heterogeneous histories is greatest, thus leading to

the efficiency losses reported.

The larger CMC efficiency advantage realized in the

breast cancer plan compared to the prostate implant can be

explained by increased correlation between bhom
n and �bhet

n .

This arises from using a uniform mixture of 85% adipose

and 15% fibroglandular tissue, which closely matches the

mean composition of the breast,36 for the homogeneous me-

dium in the CMC calculations, resulting in heterogeneity

corrections no larger than a factor of two. As shown in

Fig. 6, if water is used instead, the average HCF of the CTV

is approximately 0.5, compared to the prostate CTV, where

the distribution of HCFs is centered on unity. This is because

the breast CTV and normal parenchyma contains a large

fraction of adipose tissue which has a 2–3 fold smaller

attenuation coefficient than water at low energies. Every

interaction within adipose tissue progressively increases the

variability of heterogeneous photon weights, relative to

water medium, through repeated application of the weight

correction factor, Eq. (1). In future work, we intend to quan-

tify this effect and determine if additional variance reduction

techniques, e.g., systematic Russian roulette and splitting,

i.e., weight windowing (WW), will further enhance effi-

ciency and robustness of algorithm performance.40,41 WW

can be used to either constrain photon weights within a

desired range, or can be used to implement importance sam-

pling variance reduction that roughly sets photon weights

proportional to their detector score “importance.”42

FIG. 3. Scatter plot of percent standard deviation about the mean vs dose for

each individual voxel within the prostate (a), urethra (b), and the rectum (c),

for correlated Monte Carlo (lower) and uncorrelated Monte Carlo (upper).

The average percent standard deviation about the mean value for correlated

Monte Carlo is plotted as green line. The CPU time was 39 s.

FIG. 4. Scatter plot of percent standard deviation about the mean vs dose for

each individual voxel within the breast CTV (a), and the breast simulated

lumpectomy cavity (b) for correlated Monte Carlo (lower) and uncorrelated

Monte Carlo (upper). The average percent standard deviation about the

mean value for correlated Monte Carlo is plotted as green line. The CPU

time is 21 s.
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For organs relevant to brachytherapy treatment planning,

we have shown that10- to 41-fold mean efficiency increases

can be realized relative to conventional Monte Carlo dose

calculations when performed on the finest voxel meshes

explored in this study. It should be noted that these proof-of-

principle results are based on a sample of only two patients,

and, while encouraging, may not be representative of a large

patient population. An additional limitation of this study was

that the single prostate patient data set used had metal streak-

ing artifacts that were mitigated only incompletely by post

reconstruction image processing. Residual artifacts could

have diminished potential efficiency gains. Further studies

on larger artifact free patient data sets are needed to support

claims that our results are representative in general of breast

and prostate patients. Furthermore, testing CMC for higher

energy sources, e.g., HDR brachytherapy, and other treat-

ment sites and techniques are also needed to provide the gen-

eral characteristics of CMC.

A potential application for a fast MC code is in optimized

PSB treatment planning optimization (OTP) where dose

maps for many candidate seed configurations are computed

and tested for quality.21,43–46 If the widespread implementa-

tion of patient-specific MC-based OTP can be realized, the

dose-outcome relationship could be greatly improved, poten-

tially decreasing the incidence of toxicities.47 Unfortunately,

utilizing CMC, as presented in this study on the finest grid,

PSB OTP still requires many hours of computation time. To

further increase efficiency, additional studies are underway

to assess the clinical practicality of recovering a high spatial

resolution dose map from the summation between a low spa-

tial resolution CMC DD
c

ijk and a high spatial resolution

DTG43
ijk .

Correlated PTRAN_CT run times compare favorably with

other specialized PSB Monte Carlo codes reported in the liter-

ature. Taylor et al.48 and Yegin et al.49 reported that Brachy-

Dose, an EGSNRC based code, computes full PSB prostate dose

distributions within 5 min. More recently, BrachyDose has

been shown to compute the prostate dose distribution with an

average 2% SDM using (2 mm)3 voxels in 30 s.50 Chibani

et al.2 reported calculations in under 1 min for a 2� 2� 2

mm3 voxel mesh. In contrast, PTRAN_CT CMC computes

dose under these conditions in 3.3 s. VMCþþ has also

recently been commissioned for low-energy brachytherapy,

though time benchmarks have not yet been reported.51 Com-

mon variance reduction techniques utilized in these codes

include Russian roulette, particle splitting, track-length esti-

mation, and the reuse of photon histories. CMC differs from

these techniques as it was directly derived from a transport

equation solution to yield unbiased solutions. Though these

FIG. 5. Isodose curves for low-uncertainty uncorrelated Monte Carlo (dashed lines) and correlated Monte Carlo (solid) for prostate (a) and breast (b) using

Thet;c
2%SDM

CPU times. All calculations use the finest dose grid.

FIG. 6. Scatter plot of Gijk vs HCF for all voxels in the simulated breast plan

for correlated Monte Carlo based upon generation of photon histories in ho-

mogeneous water rather than average breast medium. The area outlined in

red circumscribes the voxels originating from the CTV.
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techniques were accurate and more efficient than their prede-

cessors, CMC appears to be substantially more efficient,

although more rigorous testing (controlling for implant geom-

etry; seed structure complexity; dose specification; and proc-

essor speed) are needed to quantitatively measure such

performance differences.

Fast dose-computation execution is not the only barrier to

clinical implementation of tissue composition heterogeneity

corrections in brachytherapy treatment planning. For low-

energy brachytherapy, the task of correctly assigning tissue

cross sections to organs or individual voxels is an important

unsolved problem.52–54 Potentially, this issue could be

addressed through quantitative imaging techniques such as

dual-energy CT.55,56

V. CONCLUSIONS

We have demonstrated that correlated Monte Carlo simu-

lations results in 38–60 fold improvements in average effi-

ciency relative to conventional uncorrelated sampling Monte

Carlo in typical low-energy seed implant geometries. De-

spite the possibility of lowering efficiency in limited subvo-

lumes, CMC appears to reduce maximum variance in the

dose grid for all low-energy interstitial implant cases investi-

gated to date. On typical single-processor workstations,

CMC has been shown to be a fast and efficient brachyther-

apy planning tool for more realistically assessing high-

resolution dose distributions with run times of the order of 1

min in our hands. Further investigation is needed to mitigate

the negative impact of particle weight decorrelation on

efficiency.
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Acceleration of Monte Carlo cone-beam scatter-projection estimate via weight windowing with a 

forward-adjoint importance generator (DRAFT) 

1 Introduction 

Cone-beam computed tomography (CBCT) has received widespread reception in radiotherapy 

and diagnostic imaging over the past decade. For radiotherapy, CBCT is an important tool for 

patient ridged boney alignment, and in more recent years, CBCT has also gained more reception 

in operating rooms, breast-dedicated CBCT1,2, and dental imaging3,4.  

CBCT also has potential for image-guided radiotherapy that utilizes deformable image 

registration and online treatment re-planning. Unfortunately, this application is limited due to 

constraints on CBCT performance such a high propensity for motion induced artifacts5. The most 

prominent limitation to CBCT is that reconstructed images are plagued with scatter induced 

artifacts1,6-8. These include streaking, loss of contrast, and cupping: all of which are summarized 

as inaccuracies in the reconstructed Hounsfield unit (HU). These artifacts diminish CBCT image 

quality and limit the potential of CBCT for quantitative imaging applications and image guided 

radiotherapy. For example, Weiss et al9 found that inter-operator contouring variability in pelvis 

scans is significantly greater for CBCT images than for fan-beam computed tomography 

(FBCT). 

The proposed methods to mitigate CBCT scatter effects fall under one of the following three 

approaches: additional hardware10-13, image post-processing7,14-19, or a combination between 

them20. Those that require additional hardware, such as beam stop arrays, can be very effective, 

but have limited application as they require multiple scans, thereby increasing patient dose 

and/or scanning time. While increased dose may be acceptable in radiotherapy, other 

applications require dose to be at minimum, such as breast-dedicated CBCT where dose is 

constrained to that of two-view mammography2. More recently, Gao et al20 presented an 

effective scatter mitigation strategy using primary beam modulation. Though this method is 

promising, its robustness is hindered by a potential to introduce artifacts caused by strong 

modulation effects.  

Many of the post-processing algorithms are highly approximate and produce inaccurate scatter 

estimates leading to diminished, instead of increased, image quality. Of the post-processing 
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algorithms presented to date, the most accurate and robust are those that subtract scatter 

estimates derived from patient-specific Monte Carlo (MC) simulations7. Unfortunately, all the 

MC solutions advanced to date require too much time for clinical practicality. For the 500-660 

projections used in CBCT, the method proposed by Kyriakou et al would require 4 to 5.5 hours 

of CPU time21. Mainegra-Hing et al22 proposed a series of variance reduction techniques to 

overcome the time limitation of MC scatter simulation but were still unsuccessful in realizing 

acceptable CPU time intervals on clinically available systems. Instead of using VR techniques, a 

more recent approach to increase computational efficiency involves adaptation of the Monte 

Carlo approach for graphics processing units (GPU)23. Unfortunately, MC particle transport does 

not map easily to the GPU programming model, yielding only modest gains, and calculational 

efficiency is highly sensitive to the developer’s level of experience24. 

As with all other scatter subtraction methods, the scatter noise is left causing an increase to the 

contrast-to-noise ratio. Zhu et al25 has proposed using a penalized weighted least squares 

algorithm suppress the noise, showing contrast errors following scatter correction and application 

of their method of less than 2% on average. The scatter noise suppression is not within the scope 

of our study. 

To significantly improve the run-time efficiency of MC computed scatter projections, this study 

introduces a principled variance reduction (VR) strategy called  importance sampling via weight-

windowing (ISWW) using a forward-adjoint importance generator (FAIG). We explore its effect 

on efficiency in computing CBCT scatter projections. Though this method has been routinely 

used in nuclear engineering for radiation shielding and criticality simulations26, to our knowledge 

this is the first application of this technique in the medical physics community. 

2 Methods 

2.1 Importance Sampling 

Simulated MC particles can be described by a multi-dimensional phase space vector, 

  , , , , ,, , ,m n m n m n m n m nE Wβ r Ω   (1) 
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where ,m nr  represents the spatial location of the mth particle’s nth collision; and ,m nΩ , ,m nE , and 

,m nW  represent the trajectory, energy, and weight respectively of the particle leaving the collision 

at ,m nr . Specifically, ,m nβ  represents a collision randomly sampled from probability density 

functions (PDF’s) that describe the radiation transport mechanisms. Importance sampling (IS) 

consists of sampling  ,m nβ  from biased PDF’s to drive simulated particles into phase-space 

regions of greater importance to the estimated detector signal. For example, in CBCT 

simulations employing purely analog sampling techniques, many low-energy photons are 

absorbed in the proximal layers of the patient anatomy and never strike the detector. Defining the 

importance, denoted as *( ) P , of a point in phase space, ( , , )EP r Ω , as the expected 

contribution from a collision with coordinates P , and its progeny, to the detector score, these 

absorbed photons have limited importance since the likelihood of making a nonzero contribution 

to the detector is small. Instead, IS biases the sampling of ,m nβ  to regions in P  that do contribute 

to the detector score and have a high *( ) P  value. To remove any bias to the detector score, a 

particle weight correction factor is applied to ,m nW . 

2.2 Weight Windows 

Systematic splitting/rouletting is an alternate implementation of importance sampling from 

biased distributions that avoids explicitly drawing random samples from the biased PDF27-29. In 

weight windows (WW), the particle’s weight in ,m nβ  is constrained within a certain interval or 

“window” centered about a desired target value. Figure 1 is an adaptation of Figure 2-24 in the 

MCNP manual30 illustrating how weight windowing works. For each point in P , the window is 

defined by an upper and lower bound, UW  and LW , around a targeted weight value, TW  such 

that, 
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the source.  It can be shown that *( ) P  denotes the importance of a point phase-space to some 

scoring function, ( )f P 26,29. 

In the forward calculation the detector response, R , is given as 

 ( ) ( )R f d 
P

P P P   (3) 

We approximate the CBCT detector signal to be proportional to the energy imparted to the CsI 

scintillator. For this purpose, R is defined as the energy imparted to each detector pixel integrated 

over detector area. Similar to eq. (3), it can be shown that, 

 *( ) ( )q dR  
P

P P P   (4) 

where ( )q P  describes the source in the forward problem. The detector response, R , can be 

thought of as a normalization factor for the importance defining the target weight TW . It can be 

shown26,27 that the optimal value of TW  of a point in P , is defined as: 

 †
*

( )
( )T

R
W 


P

P
  (5) 

For this relationship to be applied it requires a determination of *( ) P , R, and knowledge of 

( )q P . Under certain circumstances, full and accurate characterization of *( ) P leads to a zero 

variance forward Monte Carlo solution. Computing *( ) P  often requires the same or greater 

computational resources as computing the forward flux, thus negating any increase in efficiency. 

Additionally, sometimes analytical characterization of ( )q P  is unknown, such as when utilizing 

a phase-space source.  

Instead of pre-computing † )(TW P , it can be approximated through an online, adaptive method 

that is very similar to the forward-adjoint importance generator in MCNP29,30. First, the phase 

space, P , for the relative importance is discretized into energy and spatial bins where importance 

is presumed to be constant. Our initial approach neglects any angular dependence of † )(TW P . The 

normalization factor, R , is computed as the average scatter score to the flat panel detector per 



www.manaraa.com

history. The importance, *( , )ijk lE r , of each bin is approximated by the ratio of the average flat-

panel detector scatter score from photon collisions in , )( ijk lEr , including all of their progeny, and 

the total particle weight carried by particles colliding in ( , )ijk lEr , independent of angle. In this 

notation, ijkr  and lE  refer to the spatial and energy midpoints of the importance region: ijk and l 

are the importance voxel and energy bin indices respectively. Both R  and *( , )ijk lE r  are 

updated each history, while updating ( , )T ijk lW Er  occurs every 10 thousand histories to ease 

computational overhead. We call this process “forward-adjoint importance generator (FAIG),” 

and computes a Monte Carlo estimate of the expectation value of the importance, *( , )ijk lE r . 

Because of this, there is a level of uncertainty corresponding to each importance cell. In the 

results, for the final estimated importance function, the average uncertainty of the importance 

function will be presented.  

Since there can be regions of little importance, such as behind a highly attenuating material, 

,( )T ijk lW Er  can be quite large. In such regions, Russian roulette will occur frequently, with a 

very slight chance of survival. When survival does occur, the photon will be given an extremely 

high weight that can cause large deviations in the detector score, potentially increasing statistical 

uncertainty. To mitigate the deleterious impact of such events on statistical convergence, a 

maximum allowed ( , )T ijk lW Er  value, maxW , can be set in the PTRAN input file. 

The importance function is not initially known; therefore, all target weights are set to a default 

value, 0.5 iW , where iW  represents the initial photon weight. These initial weight window target 

values are used during the first 10% of simulated photon histories, during which the importance 

map is estimated. Following the first 10% of histories, this early estimate is utilized and updated 

throughout the simulation as explained above. Additionally, to incorporate some angular biasing, 

if a photon trajectory does not intersect the flat-panel detector, a weight window with maxTW W  

is applied. 
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elliptical water cylinder with major and minor axes of 20 cm and 16 cm respectively with a 

height of 30 cm, was imaged in full-fan geometry. It contains 6 cylindrical contrast inserts with 2 

cm diameters. The pelvic phantom in Figure 2(b), also modeled as an elliptical cylinder with 

major and minor axes of 36 cm and 26 cm respectively, was imaged in half-fan geometry and 

contains four bony structures and 6 contrast inserts. More details about these phantoms can be 

found in Lazos et al7. 

2.5 Evaluation of Efficiency 

The efficiency of the Monte Carlo simulation for pixel ik on the detector plate is defined as 

follows and is often referred to as the figure of merit (FOM), 

 
2

1

·ik
ik

F M
T

O


   (6) 

where 2
ik  is the statistical variance of detector pixel with indices ik (x and z dimensions in the 

DICOM imaging coordinate system) and T  is the CPU time for the simulation. The efficiency 

gain, ikG , is defined as the ratio of ikFOM for the WW and traditional, non-weight windowed, 

Monte Carlo (TMC) simulations: 

 
TMC

W
ik

ik
ik

WFOM

F M
G

O
   (7) 

ikG  was computed for each pixel on the detector plate described in the preceding section. The 

size of the importance spatial and energy grids and the value UC  were all varied to quantify 

impact on efficiency. For all calculations, the default values for UC  and the number of energy 

bins were 2.0 and 10, respectively, yielding an energy bin width of 12.25 keV), respectively. The 

default spatial grid resolutions were 7 9 11   (voxel size = 32.3 2.2 2.3 cm  ) and 10 8 7   

(voxel size = 33.6 3.3 3.6 cm  ) for the head and pelvic geometries, respectively. All simulations 

used these default values, unless they were being varied as indicated. For the head and pelvic 

phantoms, a rectangular volume just bounding the phantoms was discretized to yield the 

importance spatial grid.  
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In addition to computing importance function on the fly, PTRAN is able to use a pre-computed 

importance function throughout the entire simulation instead of using the forward-adjoint 

generator described here. This capability was tested for efficiency by using 40 million histories 

to pre-computing an importance function using FAIG. This pre-computed importance and 

feeding it back into PTRAN at the start of the simulation. Simulations using these Monte Carlo 

pre-computed importance maps from FAIG are called “pre-computed”, or PC. Conversely for 

simulations that compute the importance maps “on-the-fly” using FAIG are called “on-the-fly,” 

or OTF. 

Furthermore, the time necessary to compute the detector signal for a 40 30 ( 210 10 mm  pixels) 

with an average 3% uncertainty using PC-FAIG was estimated assuming that statistical 

uncertainty is inversely proportional to the square root of CPU time. This time value, PC-FAIG
2%T , 

was then used as run time for PC-FAIG, OTF-FAIG, and non-weight windowed Monte Carlo, 

followed by a comparison of their respective uncertainty distributions. 

  

Figure 3: Scatter projection signals (energy absorbed in keV) for the head (a) and body (b) phantoms used in this study. The 
average uncertainty for both across the detector plate was 3.5%. 

 

  

(a) (b) 
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Figure 4: Plots of the efficiency gain for both (a) head and (b) pelvic phantoms using OTF (solid) and PC (dashed) importance 
functions on various spatial grid sizes.  

 

Figure 5: Plots of the efficiency gain for both (a) head and (b) pelvic phantoms using OTF (solid) and PC (dashed) importance 
functions with different levels of energy discretization.  

Figure 6: Plots of the efficiency gain for both (a) head and (b) pelvic phantoms using OTF (solid) and PC (dashed) importance 
function with different values for UC . 

 

(a) (b) 

(a) 

(b) (a) 
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3 Results 

The scatter projections, with 3.5% uncertainty, for the head and body phantoms used in this 

study are shown in Figure 3, and look like previously published data. 

Figure 4 shows the distribution of ikG  for both the head and pelvic phantoms when varying the 

size of the importance spatial cell. Corresponding quantitative metrics for the distributions are 

found in Table I for the head phantom and Table II for the body phantom. Using OTF, there 

appears to be no advantage to using higher resolution importance cells. In fact, the highest 

resolution spatial grid is associated with a large decrease in efficiency compared to TMC. 

However, when using PC, higher resolution importance cells are associated with larger increases 

in efficiency, as verified by increase mean and most peak values reported in Table I and Table II.  

Effects from varying the number of energy bins from 5 to 20 are shown in Figure 5 and Table I 

and Table II. The same behavior between the OTF and PC with respect to spatial cell size 

(Figure 4), is also seen for energy bin width. For both phantoms there appears to be no additional 

benefit from using more energy bins. Visually inspecting the graphs show that the OTF 

calculations perform most efficiently with the smallest number of energy bins studied.  

Figure 6 contains the plots for varying the WW width, UC , from 1.5 to 3.0 and the 

corresponding distribution metrics are found in Table I and Table II. Varying UC  does not affect 

efficiency gain for PC. For the head phantom, the mean and most probable values increased 20% 

and 56%, respectively, relative to a UC  value of 3.0. Likewise, for the body phantom, the mean 

and most probable values increased 12% and 56%, respectively, relative to a UC  of 3.0. This 

suggests that when using OTF, a tighter window will be more efficient.  
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Table I: Quantitative metrics for the efficiency gain distributions shown in Figure 4-Figure 6 for the digital head phantom. Values 
are listed for the mean, standard deviation about the mean, 20th and 80th percentiles, and the most probable value (MPV). 

 Mean Std. Deviation 20th Percentile 80th Percentile MPV 

Grid Sizes OTF PC OTF PC OTF PC OTF PC OTF PC 
20 25 31   10.5 27.5 7.5 8.4 3.7 20.4 16.6 33.9 1.1 22.3 

10 13 15   13.4 24.6 6.5 7.8 8.1 18.2 18.3 30.8 9.8 21.5 

7 9 11   13.7 24.1 6.4 8.6 8.3 17.7 18.4 30.1 9.9 21.6 

5 7 8   13.4 23.5 6.2 7.4 8.2 17.1 18.0 29.5 10.0 20.9 

Energy Bins           
20 13.7 26.4 6.7 8.5 8.1 19.3 18.7 33.0 9.9 25.1 
15 13.5 24.6 6.4 7.8 8.1 18.0 18.2 30.7 9.8 22.6 
10 13.7 24.0 6.4 7.5 8.4 17.6 18.6 30.0 9.9 24.3 
5 13.3 22.5 6.0 7.0 8.3 16.5 17.9 28.1 11.2 20.1 

UC  Values           

3.0 12.3 23.7 6.7 7.4 6.6 17.4 17.3 29.5 7.6 19.5 
2.5 13.0 23.9 6.6 7.5 7.4 17.4 18.0 29.7 8.3 20.8 
2.0 13.5 24.1 6.3 7.6 8.2 17.7 18.3 30.1 9.8 21.7 
1.5 14.8 24.3 6.3 7.6 9.5 17.8 19.6 30.4 11.1 22.1 

 

Table II: Quantitative metrics for the efficiency gain distributions shown in Figure 4-Figure 6 for the digital pelvic phantom. 
Values are listed for the mean, standard deviation about the mean, 20th and 80th percentiles, and the most probable value (MPV). 

 Mean Std. Deviation 20th Percentile 80th Percentile MPV 

Grid Sizes OTF PC OTF PC OTF PC OTF PC OTF PC 
40 29 28   9.4 34.7 9.7 13.3 1.7 23.7 16.7 45.0 0.4 33.8 

20 15 14   16.0 35.6 10.4 13.0 7.5 24.4 23.5 25.7 8.3 33.8 

10 8 7   16.6 31.9 10.1 11.7 8.3 21.9 24.0 41.1 9.8 26.0 

7 6 5   16.1 30.9 9.6 11.2 8.0 21.4 23.1 39.8 8.4 26.9 

Energy Bins           
20 16.3 33.6 10.4 12.5 7.8 23.1 23.7 43.4 8.4 34.2 
15 16.4 33.1 10.2 12.2 8.0 22.7 23.7 42.7 8.4 31.1 
10 16.4 32.5 10.0 11.8 8.1 22.3 23.6 41.8 9.8 26.6 
5 16.7 31.8 9.9 11.6 8.5 21.9 24.0 41.0 9.0 26.0 

UC  Values           

3.0 15.3 32.0 10.8 11.7 6.3 22.1 23.2 41.2 6.5 28.9 
2.5 16.2 31.9 10.5 11.7 7.4 21.9 23.9 441.1 7.4 31.5 
2.0 16.4 32.2 10.0 11.8 8.1 22.1 23.5 41.4 9.3 26.5 
1.5 17.2 32.1 9.7 11.8 9.3 22.2 24.1 41.3 10.2 31.2 
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Figure 7: Scatter plots of the percent standard deviation vs. detected signal (keV) for the (a) head and (b) body phantom 
following a run-time of 37 sec to yield an average 3% uncertainty for PC-FAIG.  

Figure 7 shows the distributions of percent standard deviation about the mean using PC-FAIG, 

OTF-FAIG, and the non-weight windowed, standard Monte Carlo for both the head and body 

phantoms. The time required for PC-FAIG to achieve a 3% uncertainty, 37 sec, was used as run-

time for all three methods. This figure clearly shows the advantage of both OTF and PC-FAIG 

over the non-weight windowed Monte Carlo. Additionally, there is an additional advantage of 

PC-FAIG over OTF-FAIG. Table III contains some quantitative descriptors corresponding to the 

distributions plotted in Figure 7.  

Table III: Quantitative metrics corresponding to the distributions plotted in Figure 7 for the head and body phantom.  

 Mean Std. Deviation 20th Percentile 80th Percentile MPV 

Case OTF PC NWW OTF PC NWW OTF PC NWW OTF PC NWW OTF PC NWW 
Head 4.66 3.00 12.3 1.53 0.36 1.14 3.79 2.69 11.31 4.98 3.33 13.30 4.35 2.71 11.89 
Body 4.82 2.95 14.42 2.10 1.00 1.87 3.65 2.63 12.81 5.27 3.13 15.87 4.16 2.68 13.05 

Table IV: Time benchmarks for OTF-FAIG, PC-FAIG and non-weight windowed (NWW) Monte Carlo for two different pixel 
sizes for the head and body phantoms. Default importance grids were used. 

Case  Time Required for Average 3% Uncertainty Time Required for Average 10% Uncertainty 
Head (pixel area)  OTF PC NWW OTF PC NWW 

21010  mm   89.5 sec 37.1 sec 10.6 min 8.1 sec 3.3 sec 60.0 sec 
22.5 2.5 mm   14.1 min 7.4 min 2.9 hrs 76.0 sec 40.2 sec 15.5 min 

Body (pixel area)        
21010  mm   100.3 sec 36.9 sec 14.4 min 9.0 sec 3.2 sec 77.9 sec 

22.5 2.5 mm   17.0 min 7.4 min 3.82 min 92.0 sec 40.1 sec 20.7 min 

 

(a) (b) 
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Table IV contains the amount of time required by each method (OTF-FAIG, PC-FAIG, and 

NWW-MC) to reach an average 3% and 10% statistical uncertainty for both phantoms projected 

onto 210 10 mm  and 22.5 2.5 mm pixels. The default importance grids were used for these 

calculations. It was found that only both OTF and PC-FAIG can compute scatter projections in 

fewer than 10 sec, only 3.3 sec for PC-FAIG, if 10% uncertainty was enough with a 210 10 mm

pixel area.  

While Figure 4Figure 7 and Table III-Table IV demonstrate an obvious gain from using PC 

importance function over OTF-OTF-FAIG in general, such pre-computed importance maps will 

not be available. OTF-FAIG is more appropriate in this scenario.  However, some of the benefits 

of PC can be salvaged when computing scatter projections for consecutive angles. For example, 

On the first angle, 0 , use OTF-FAIG to compute the importance function corresponding to 0 , 

0

*( ) P , and also to bias the photon transport for the projection corresponding to 0 . On the 

next angle, 1 , use the pre-computed importance function, 
0

*( ) P , to bias the transport for the 

projection corresponding to 1 , but use OTF-FIAG to compute 
1

*( ) P . Though 
1

*( ) P

corresponds to the projection taken at angle 1 , it is then used to bias the transport of 2  while 

OTF-FAIG produces 
2

*( ) P to be used for 3  and so on. This process is repeated for all the 

angles simulated we call it prior-angle FAIG, PA-FAIG. To improve the statistics in the 

computed importance functions, it may be desirable to average the last two or three previous 

projections’ importance maps, to bias the transport of particles corresponding to the current 

projection, to reduce statistical noise in the importance function. We have taken this approach 

and averaged the last two previous importance functions to bias the transport of the projection 

being currently simulated. 

Figure 8 contains the average efficiency gain for each of 90 projections uniformly spaced around 

a 360 degree arc using both OTF-FAIG and PA-FAIG. The default spatial grids were used along 

with 5 energy bins to decrease the statistical uncertainty of the importance function. Four million 

histories were used for each projection and a UC  = 1.5.  Figure 8 shows that using PA-FAIG 

increases the efficiency beyond the gains achieved solely by OTF. The lower efficiency of the 

first gantry-angle computation is due to using the OTF-FAIG method for that angle. Compared 
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to the mean efficiency gains in Figure 4Figure 6 for PC-FAIG, our approximate FAIG technique 

exhibits efficiency gains only 70% as large, due to the extra overhead incurred by computing its 

own importance map for the next projection’s use. Taking this overhead into account, re-use of 

the previous projection’s importance function for the current angle is still more than twice as fast 

as solely using the OTF-FAIG. 

  

Figure 8: plots of the average efficiency gain for the (a) head and (b) pelvic phantom around a 360 degree rotation. Each 
projection uses an average importance function from the two projections preceding it. 

 

Figure 9 shows the relationship between phantom thicknesses as the gantry is rotated and 

average efficiency gain using MA-FAIG and OTF-FAIG for both the head and body phantoms. 

This relationship is plotted separately for each quadrant of the unit circle. For MA-FAIG, Figure 

9 shows a slight efficiency advantage in quadrants 2 and 4 for the head phantom and quadrants 1 

and 3 for the body phantom. 

(a) (b) 
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Figure 9: Plotting the average efficiency gain using MA-FAIG (red) and OTF-FAIG (blue) vs. head (a) and body (b) phantom 
thickness for each quadrant of the unit circle. 

4 Discussion 

Significant gains in computing accurate scatter projections via the Monte Carlo method using the 

forward-adjoint importance generator were achieved. Additionally, we found that using a “pre-

computed” importance function more than doubled the gains, on average, achieved by the “on-

the-fly” generator. Though it is uncommon in practice to have such prior knowledge of the 

importance function, a method was presented, called MA-FAIG, that approximates the 

projection’s importance function to be the same as the importance function for the previous 

projection. It was found that MA-FAIG was able to achieve gains close to PC-FAIG. 

Furthermore, Figure 8 and Figure 9 suggests that our implementation of FAIG is also more 

efficient as the effective radiological path-length through the patient increases, thus adding 

additional efficiency for larger patients.  

To compare with other published methods, Mainegra-Hing et al22 reported 512 sec to reach an 

average 10% standard deviation for a 256 256 grid for their chest phantom. Using the best 

combination of our methods, under the same circumstances, only 180 sec for either phantom is 

required to reach the same level of uncertainly. In practice, since scatter is a slowly varying 

function, only 40 30  detector pixels would need to be simulated7. If aiming for an average of 

3% standard deviation, only 37 sec for either phantom is required per projection. If only 180 

angles were required to characterize the patient scatter in 360 degrees, interpolating the missing 

angles, and taking advantage of today’s parallel processing power with 8 CPU cores, this 
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calculation would only require 14 min of MC. On the other hand, Colijn et al15 were able to 

recover smooth and accurate CBCT projections from noisy data after applying a smoothing filter 

suggesting that 10% uncertainty would be acceptable. Under these circumstances, OTF- and PC-

FAIG would only require 3.0 min and 1.25 min, respectively, using the 40 30 detector grid and 

180 angles simulated.  

Further improvements in the WW efficiency could be achieved through the application of fast, 

efficient solution to the adjoint-BTE through use of the discrete-ordinate-method (DOM) to pre-

compute a non-statistical estimate for *( , )ijk lE r  and could even include angular biasing. This 

would unleash the full power of our WW scheme by using more optimal values for ( , )T ijk lW Er

throughout the entire simulation and not having to rely on OTF-FAIG to estimate *( , )ijk lE r . 

5 Conclusion 

We have demonstrated that importance based weight windowing is a powerful tool that results in 

10-35 fold improvements in average efficiency relative to conventional Monte Carlo methods for 

CBCT simulations. Furthermore, we have shown that our forward-adjoint importance generator 

is effective in computing the importance function both for “on-the-fly” calculations and for re-

use as a pre-computed importance function. Even using importance functions corresponding to a 

nearby angle was effective in improving the efficiency a projection at a different angle. To fully 

quantify the efficiency gain for a patient population, further study needs to be done on patient 

geometries. 
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close all;

more off;

clc;

 

 

%This matlab code will help me to form the grid structure of my

% PARTISN calculations. ALL DISTANCES ARE IN CM!!!

%  This has now been expanded to write the input file in general,

%  and NOT JUST the geometry. This now writes the entire input file.

 

COMPUTE_GEOMETRY = 1;

if COMPUTE_GEOMETRY

    clear all;    

    octave = 0;

    fprintf(’hello, I have begun\n’)

%Set the projection angle

projAngle = 0.0*pi/180.0;

 

%Set the outside boundaries of the PARTISN calculation. These

% bounds bound the PARTISN geometry and are the the literaly bounds

% for the coarse grid.

xBoundStart =  −19.8656;

xBoundEnd   =   19.8656;

zBoundStart = −100.0000;

zBoundEnd   =   50.0600;

yBoundStart =  −14.8992;

yBoundEnd   =   14.8992;

 

 

%Set the bounds for the object to be imaged within the coarse

% bounds. These will define the structure of the coarse grid within

% that which is important.

 

xObjectStart =  −10.0000;

xObjectEnd   =   10.0000;

zObjectStart =  −10.0000;

zObjectEnd   =   10.0000;

yObjectStart =  −12.5000;

yObjectEnd   =   12.5000;

 

 

%Decide how many voxels you would like in each dimension for the
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% object being imaged

%Fine Grid

NxObject =  31; %(Must be an odd number to localize the forward source)

NzObject =  21; %(Can be either odd or even)

NyObject =  21; %(Must be an odd number to localize the forward source)

% $$$ %Coarse Grid 

% $$$ NxObject =  11; %(Must be an odd number to localize the forward source)

% $$$ NzObject =  11; %(Can be either odd or even)

% $$$ NyObject =  11; %(Must be an odd number to localize the forward source)

 

%Define the voxel thicknesses

dxObject = (xObjectEnd−xObjectStart)/NxObject;

dzObject = (zObjectEnd−zObjectStart)/NzObject;

dyObject = (yObjectEnd−yObjectStart)/NyObject;

 

%Now at the top of the simulation universe, I need to create

% another extra line in y, so that I can isolate the voxel that

% source is located in. 

sourceLineThickness = dzObject;

 

%Information needed for the detector plate

detectPlateThickness = 0.06;

 

 

%AJS 05 Dec 2012

% Describe the y extents of the Bowtie (BT) filter.

zBTStart = −85.0;

zBTEnd   = −80.0;

NzBowtie =  20; %FG

% $$$ NzBowtie =  3; %CG

dzBT = (zBTEnd−zBTStart)/NzBowtie;

 

 

%Now, would you like to have any other "extra" grid lines in the

% dimensions before and after the object grid. The object grid is

% defined by the ’*ObjectStart’, ’*ObjectEnd’, and the ’N*’

% variables. These variables tell me how many voxels you would like

% in each dimension before and after the object grid. It would set

% up the grid lines evenly spaced. It is defined seperately for

% before, the object (relative to the consecutive number line) or

% after the object. This seperation helps facilitate the half fan

% geometry. 
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%AJS 05 Dec 2012

% it is importance to remember that the y and z axes are switched

% in PARTISN from the their corresponding axes in the PTRAN geometry.

 

%AJS 06 Dec 2012

% To include the BT filter, I need to add another section where I

% can soley define the grid spacing. The following will reflect the

% changes.

 

%Fine Grid

NxBeforeBound   = 5; 

NzBeforeBTBound = 7;

NyBeforeBound   = 5;

 

NzBetween       = 30;

 

NxAfterBound    = 5; 

NzAfterBound    = 20;

NyAfterBound    = 5;

 

%Coarse Grid

% $$$ NxBeforeBound   = 2; %CG

% $$$ NzBeforeBTBound = 2; %CG

% $$$ NyBeforeBound   = 2; %CG

% $$$ 

% $$$ NzBetween       = 7; %CG

% $$$ 

% $$$ NxAfterBound    = 2; %CG

% $$$ NzAfterBound    = 5; %CG

% $$$ NyAfterBound    = 2; %CG

 

%Now decide whether or not you’re going to use the BT filter

bowtie   = 1;

 

%Now it is time to define the thickness of these voxels

dxBeforeBound = (xObjectStart−xBoundStart)/NxBeforeBound; 

dzBeforeBTBound = (zBTStart−(zBoundStart+sourceLineThickness))/NzBeforeBTBound; 

dyBeforeBound = (yObjectStart−yBoundStart)/NyBeforeBound; 

 

if(bowtie)

    dzBetween     = (zObjectStart−zBTEnd)/NzBetween;
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else

    dzBetween     = (zObjectStart−zBoundStart)/NzBetween;

end

 

dxAfterBound  = (xBoundEnd−xObjectEnd)/NxAfterBound;

dzAfterBound  = (zBoundEnd−zObjectEnd−detectPlateThickness)/NzAfterBound;

dyAfterBound  = (yBoundEnd−yObjectEnd)/NyAfterBound;

 

 

%Now it is time to define the x grid

xGrid = zeros(NxBeforeBound+NxAfterBound+NxObject+1,1);

xGrid(1:NxBeforeBound+1) = xBoundStart:dxBeforeBound:xObjectStart;

xGrid(NxBeforeBound+1:NxBeforeBound+NxObject+1) = xObjectStart: ...

    dxObject:xObjectEnd;

xGrid(NxBeforeBound+NxObject+1:NxBeforeBound+NxAfterBound+NxObject+1) = ...

    xObjectEnd:dxAfterBound:xBoundEnd;

 

%Now it is time to define the z grid

yGrid = zeros(NyBeforeBound+NyAfterBound+NyObject+1,1);

yGrid(1:NyBeforeBound+1) = yBoundStart:dyBeforeBound:yObjectStart;

yGrid(NyBeforeBound+1:NyBeforeBound+NyObject+1) = yObjectStart: ...

    dyObject:yObjectEnd;

yGrid(NyBeforeBound+NyObject+1:NyBeforeBound+NyAfterBound+NyObject+1) = ...

    yObjectEnd:dyAfterBound:yBoundEnd;

 

%Now the yGrid works a little differently because of the "extra"

% lines associated with the source and detector

if(bowtie)

    zGrid = zeros(2+NzBeforeBTBound+NzAfterBound+NzObject+1+NzBetween+NzBowtie,1);

    zGrid(1) = zBoundStart;

    zGrid(2:NzBeforeBTBound+2)...

        = zBoundStart+sourceLineThickness:dzBeforeBTBound:zBTStart;

    zGrid(NzBeforeBTBound+2:...

          NzBeforeBTBound+2+NzBowtie)...

        = zBTStart:dzBT:zBTEnd;

    zGrid(NzBeforeBTBound+2+NzBowtie:...

          NzBeforeBTBound+2+NzBowtie+NzBetween) ...

        = zBTEnd:dzBetween:zObjectStart;

    zGrid(NzBeforeBTBound+2+NzBowtie:...

          NzBeforeBTBound+2+NzBowtie+NzBetween) ...

        = zBTEnd:dzBetween:zObjectStart;

    zGrid(NzBeforeBTBound+2+NzBowtie+NzBetween:...
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          NzBeforeBTBound+2+NzBowtie+NzBetween+NzObject)...

        = zObjectStart:dzObject:zObjectEnd;

    zGrid(NzBeforeBTBound+2+NzBowtie+NzBetween+NzObject:...

          NzBeforeBTBound+2+NzBowtie+NzBetween+NzObject+NzAfterBound) = ...

        zObjectEnd:dzAfterBound:zBoundEnd−detectPlateThickness;

    zGrid(end) = zBoundEnd;

else    

    zGrid = zeros(NzBeforeBTBound+NzAfterBound+NzObject+1+NzBetween+NzBowtie,1);

    zGrid(1:...

          NzBeforeBTBound+1+NzBowtie+NzBetween) ...

        = zBoundStart:dzBetween:zObjectStart;

    zGrid(NzBeforeBTBound+1+NzBowtie+NzBetween:...

          NzBeforeBTBound+1+NzBowtie+NzBetween+NzObject)...

        = zObjectStart:dzObject:zObjectEnd;

    zGrid(NzBeforeBTBound+1+NzBowtie+NzBetween+NzObject:...

          NzBeforeBTBound+1+NzBowtie+NzBetween+NzObject+NzAfterBound) = ...

        zObjectEnd:dzAfterBound:zBoundEnd;

end

 

%****************************************************************

%****************************************************************

%AJS 05 Dec 2012

%I wonder if I could set up a little diddy here and plot out 

% what the grid actually looks like.

% We could do this bt planes

figure

%x−y plane (in PTRAN)

hold on

for j=1:length(zGrid)

    plot([xGrid(1) xGrid(end)],[zGrid(j) zGrid(j)],’b−’,’LineWidth’,2);

end

for i=1:length(xGrid)

    plot([xGrid(i) xGrid(i)],[zGrid(1) zGrid(end)],’b−’,’LineWidth’,2);

end

set(gca,’LineWidth’,2,’FontSize’,12,’FontWeight’,’demi’);

axis image

title(’x−y plane’)

% $$$ set(h_title,’FontSize’,16,’FontWeight’,’demi’);

xlabel(’x−axis (cm)’)

% $$$ set(h_xlab,’FontSize’,16,’FontWeight’,’demi’);

ylabel(’y−axis (cm)’)

% $$$ set(h_ylab,’FontSize’,16,’FontWeight’,’demi’);
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hold off

 

figure

%x−z plane (in PTRAN)

hold on

for j=1:length(yGrid)

    plot([xGrid(1) xGrid(end)],[yGrid(j) yGrid(j)],’b−’,’LineWidth’,2);

end

for i=1:length(xGrid)

    plot([xGrid(i) xGrid(i)],[yGrid(1) yGrid(end)],’b−’,’LineWidth’,2);

end

set(gca,’LineWidth’,2,’FontSize’,12,’FontWeight’,’demi’);

axis image

title(’x−z plane’)

% $$$ set(h_title,’FontSize’,16,’FontWeight’,’demi’);

xlabel(’x−axis (cm)’)

% $$$ set(h_xlab,’FontSize’,16,’FontWeight’,’demi’);

ylabel(’z−axis (cm)’)

% $$$ set(h_ylab,’FontSize’,16,’FontWeight’,’demi’);

hold off

 

figure

%z−y plane (in PTRAN)

hold on

for j=1:length(zGrid)

    plot([yGrid(1) yGrid(end)],[zGrid(j) zGrid(j)],’b−’,’LineWidth’,2);

end

for k=1:length(yGrid)

    plot([yGrid(k) yGrid(k)],[zGrid(1) zGrid(end)],’b−’,’LineWidth’,2);

end

set(gca,’LineWidth’,2,’FontSize’,12,’FontWeight’,’demi’);

axis image

title(’z−y plane’)

% $$$ set(h_title,’FontSize’,16,’FontWeight’,’demi’);

xlabel(’z−axis (cm)’)

% $$$ set(h_xlab,’FontSize’,16,’FontWeight’,’demi’);

ylabel(’y−axis (cm)’)

% $$$ set(h_ylab,’FontSize’,16,’FontWeight’,’demi’);

hold off

% $$$ 

% $$$ asdf;

%****************************************************************
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%****************************************************************

 

%Now that I have the grid set up, I need to set up the "zones"

% variable. The "zones" variable is basically a 3 dimensional

% structure that contains all the cross−section material

% assignment. The materials are automatically numbered in PARTISN

% based on order of appearance in the input file. For our purposes,

% I (AJS) have decided that "air" is the first material in the

% input file and this is what "zones" is initialized with.

 

%First, initialize the size of "zones" with "ones" to set the

%default value to "air". Now notice that zones is sized by the

%number of voxels, and not the number of grid lines, like the

%"*Grid" variables are.

if(bowtie)

    zones = ones(NxBeforeBound+NxAfterBound+NxObject,...

                 NyBeforeBound+NyAfterBound+NyObject,...

                 2+NzBeforeBTBound+NzAfterBound+NzObject+NzBetween+ ...

                 NzBowtie);

else

    zones = ones(NxBeforeBound+NxAfterBound+NxObject,...

                 NyBeforeBound+NyAfterBound+NyObject,...

                 NzBeforeBTBound+NzAfterBound+NzObject+NzBetween+ ...

                 NzBowtie);

end

%Air is material #3;

zones(:,:,:) = zones(:,:,:)*3; %Set it to air

 

[NxMax,NyMax,NzMax] = size(zones);

 

%Now to compute some help here, I need to have an array that holds

%the centroid for all the voxels. I will need a seperate one for

%the x, y, and the z.

xCentroid = 0.0*zones;

yCentroid = 0.0*zones;

zCentroid = 0.0*zones;

 

xCentroid = (xGrid(2:NxMax+1)−xGrid(1:NxMax+1−1))*0.5+xGrid(1:NxMax+1−1);

yCentroid = (yGrid(2:NyMax+1)−yGrid(1:NyMax+1−1))*0.5+yGrid(1:NyMax+1−1);

zCentroid = (zGrid(2:NzMax+1)−zGrid(1:NzMax+1−1))*0.5+zGrid(1:NzMax+1−1);

 

%Now decide what struture you would like to include in your
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% simulation

 

cylinder = 1;

 

%AJS 05 Dec 2012

if bowtie

    %This is going to be very simple. If the BT point falls within

    % the y−x importance voxel, then we’re going to make that space

    % a bow−tie space. I’ll need to read in the points and find

    % which x and  y (PTRAN y, in partisn it will be a z) place

    % they fall in.

    

    %First, I need to read in all the BT filter data.

    fidBT = fopen([’/media/RESEARCH/home/ptran/PTRAN9/’ ...

                   ’ptran_9_50_Try2/input/BTr.txt’]);

    dummy = fscanf(fidBT,’%s’,[1 2]);

    numPoints = fscanf(fidBT,’%i’,[1 1]);

    x = zeros(numPoints,1);

    y = zeros(numPoints,1);

    for n = 1:numPoints

       dummyVal = fscanf(fidBT,’%g’,[1 2]);

       x(n) = dummyVal(1);

       y(n) = dummyVal(2);

    end

    %Okay, these points need to be flipped and translated in y, but

    %y only.

    y = (−1)*(y*(−1.0)+850.0);

    %Now both values in x and y need to be converted to cm from

    %their native mm that PTRAN uses.

    x = x/10.0;

    y = y/10.0;

    

    

    %Now that I have read in the values, I need to pick out the

    %importance voxels that correspond to the BT filter. To do

    %this, I’m going to loop over the x−y points (in PTRAN)

    %geometry, and if the center points fall within the BT filter,

    %than I’ll make that entire voxel assigned to the aluminum for

    %the BT filter. In the following, I am using PARTISN’s

    %description for the y and z axes.

    yBTBound = 10;

    xmax = max(x);
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    xmin = min(x);

    zmax = max(y);

    zmin = min(y);

    for j=1:NyMax

        fprintf(’NyMax = %g, j = %g\n’,NyMax,j);

        if(abs(yCentroid(j)) <= yBTBound)

            for k = 1:NzMax

                if(zCentroid(k) >= zmin && zCentroid(k) <= zmax)

                    for i=1:NxMax

                        if(xCentroid(i) >= xmin && xCentroid(i) <= xmax)

                            inPoly = inpolygon(xCentroid(i),zCentroid(k),x, ...

                                               y);

                            if(inPoly)

                                zones(i,j,k) = 2;

                            end

                        end

                    end

                end

            end

        end

    end

    

    

    

end

 

% $$$ asdf;

 

if cylinder

    %This is an elliptical cylinder, where you can define different

    % radi and the axes. Also, it must be centered about the

    % origin.

    

    %I need to do a loop over all the centroids and find which ones

    % fall within the cylinder bounds.

    

    %Set the cylinder bounds

    xRadius =  8.00;

    zRadius = 10.00;

    yLength = 25.00;

    

    for j=1:NyMax
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        if mod(j,10) == 0

            fprintf(’ j = %g\n’,j);

        end

        if(abs(yCentroid(j)) <= yLength/2)            

            %Now that I’m in the z space that is spanned by the

            % cylinder, I need to to step over the x and y space and

            % check the centroids and find those that are within the

            % cylinder and mark them.

            for i=1:NxMax

                for k=1:NzMax

                    %Now check to see if the elliptical cyliner radius at

                    % this point covers what it should be. 

                    

                    %First, I need to compute the x−y radius of

                    % this point.

                    rVoxel = sqrt(xCentroid(i)^2+zCentroid(k)^2);

                    %Second, I need to find the angle of this point with

                    % respect to the origin

 

                    if(xCentroid(i) == 0.d0)

                        rCylinder = zRadius;

                    elseif(zCentroid(k) == 0.d0)

                        rCylinder = xRadius;

                    else

                        rCylinder = abs(rVoxel/(1.0/xRadius^2+(zCentroid(k)...

                            /xCentroid(i)/zRadius)^2)^(1.0/2.0)/xCentroid(i));                       

                    end

% $$$                     if xCentroid(i) == 0.d0

% $$$                         theta = pi/2.0;

% $$$                     else

% $$$                         theta = atan(yCentroid(j)/xCentroid(i));

% $$$                     end

% $$$                     %Now use this theta to find the radius of the

% $$$                     % cylinder at this angle.

% $$$                     rCylinder = xRadius*zRadius/sqrt((zRadius* ...

% $$$                                                       cos(theta)) ...

% $$$                                                      ^2+ ...

% $$$                                                      (xRadius*sin(theta))^2);

% $$$                     if(k == 2 && j == 27 && i == 47)

% $$$                         fprintf(’rVoxel = %g\n’,rVoxel);

% $$$                         fprintf(’rCylinder = %g\n’,rCylinder);

% $$$                         fprintf(’ xCentroid(i) = %g\n’,xCentroid(i));
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% $$$                         fprintf(’ yCentroid(j) = %g\n’,yCentroid(j));

% $$$                         pause

% $$$                       

% $$$                     end

                    if rVoxel <= rCylinder

                        zones(i,j,k) = 1; %Assigned in order from

                                          % assign variable.

% $$$                         if(k == 2 && j == 27 && i == 47)

% $$$                             display(’I made it in here’)

% $$$                             pause

% $$$                         end

                    end

                end

            end

        end

        

    end

    

    

end

 

 

 

 

% $$$ zones(:,:,:) = 3;

%Now set the detector plate

 

%If we’re doing the BT filter, we’re also doing the detector plate.

% The new way of doing this uses neither.

if(bowtie)

    zones(:,:,end) = 4;

else

    zones(:,:,end) = 3;

end

% $$$ [lx,lz,ly]=size(zones);

% $$$ for i=1:25

% $$$     imagesc(reshape(zones(:,i,:),lx,ly)’)

% $$$     axis image

% $$$     pause

% $$$ end

end %COMPUTE_GEOMETRY
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%*****************************************************************************

%*****************************************************************************

%AJS 05 December 2012

%Write a little something to allow visualization of the geometry

[XCentroid ZCentroid] = meshgrid(xCentroid,zCentroid);

H = reshape(zones(:,floor(NyMax/2),:),NxMax,NzMax);

% $$$ surf(XCentroid,ZCentroid,H’,’EdgeColor’,’none’);

% $$$ axis equal

% $$$ view(2)

% $$$ imagesc(xGrid,zGrid,reshape(zones(:,floor(NyMax/2),:),NxMax,NzMax)’)

% $$$ axis image

 

figure

hp = pcolor(XCentroid,ZCentroid,H’);

set(gca,’LineWidth’,2.0,’FontSize’,12.0,’FontWeight’,’demi’)

xlabel(’x (cm)’,’FontSize’,14.0,’FontWeight’,’demi’)

ylabel(’y (cm)’,’FontSize’,14.0,’FontWeight’,’demi’)

% $$$ set(hp,’EdgeColor’,’none’);

axis image

lcb = colorbar

set(lcb,’LineWidth’,2.0,’FontSize’,12.0,’FontWeight’,’demi’)

 

 

% $$$ asdf;

 

%*****************************************************************************

%*****************************************************************************

%Okay, Now it’s time to write this thing out to file so I can

% paste this into the input file.

 

%Open the file for writing

fid = fopen(’./22Mar2013/CBCT_GeomSn32G8P5ADFGTmp.inp’,’w’);

% $$$ fid = fopen(’fileTmp.inp’,’w’);

 

%write the preface of the file

nhead   = 2; %The number of title lines that follow

notty   = 0; %Suppress output to online user terminal (Or in other

             % words, would you also like to NOT create an output file?)

             % 0/1 = no/yes

nolist  = 1; %Suppress the listing in the output file all the user
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             % input from the input file? 0/1 = no/yes

npass   = 0; % Not used

restart = 0; %Perform a time−dependent restart? 0/1/2 = no/yes/yes

             % (with FILEIO = 1)

fprintf(fid,’%6i%6i%6i%6i%6i\n’,nhead,notty,nolist,npass, ...

        restart);

fprintf(fid,’CBCT water cylinder input file − AJS December 06, 2012\n’);

fprintf(fid,’Cross sections from NJOY DTFR output\n’);

 

%*******************************************************************************

%*******************************************************************************

% START BLOCK I

%write the dillimeter lines to separate this block from the others.

% Block I contains the dimensions and the overall controls.

fprintf(fid,’/\n’);

fprintf(fid,[’/******************************** B L O C K I ***************’...

    ’*******************\n’]);

fprintf(fid,’/\n’);

fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);

fprintf(fid,’/ PLEASE CONSULT THAT FILE AND THE PARTISN MANUAL FOR MORE DETAILED\n’);

fprintf(fid,’/ EXPLANATION OF WHAT THESE VARIABLES ARE.\n’);

igeom = ’x−y−z’; % We have an x−y−z grid geometry

fprintf(fid,’igeom= %s\n’,igeom);

ngroup = 8;    % The number of groups in our energy discretization

fprintf(fid,’ngroup= %i\n’,ngroup);

isn = 32;        % The level of angular quadrature. The higher this

                 % number, the fewer "ray effects" are realized. To

                 % find the number of angles per quadrant: isn*(isn+2)/8

fprintf(fid,’isn= %i\n’,isn);

niso = 8;        % The number of isotopes in our cross−section file

fprintf(fid,’niso= %i\n’,niso);

mt = 5;          % The number of simulated materials or "mixtures"

                 %  from the "niso" isotopes

fprintf(fid,’mt= %i\n’,mt);

nzone = mt;      % The number of Zones. In most cases, each zone

                 %  will correspond directly to an isotope mixture

                 %  for our PTRAN calculations

fprintf(fid,’nzone= %i\n’,nzone);

nosolv = 0;      % Suppress solver module execution: 0/1 = no/yes

fprintf(fid,’nosolv= %i\n’,nosolv);

noedit = 1;      % Suppress edit module execution: 0/1 = no/yes

fprintf(fid,’noedit= %i\n’,noedit);
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im = NxObject+2;        % The total number of coarse grids

                        % intervals in "x"

im = NxMax

fprintf(fid,’im= %i\n’,im);

it = NxMax        % The total number of fine mesh intervals in "x

fprintf(fid,’it= %i\n’,it);

 

jm = NyObject+2; % The total number of coarse grids intervals in

                   % "y". 2 extra for the source and detector voxel

                   % planes.

jm = NyMax %No longer modeling the two extra pieces.

fprintf(fid,’jm= %i\n’,jm);

jt = NyMax        % The total number of fine mesh intervals in "y"

fprintf(fid,’jt= %i\n’,jt);

 

km = NzObject+2+2;        % The total number of coarse grids

                        % intervals in "z"

km = NzMax

fprintf(fid,’km= %i\n’,km);

kt = NzMax        % The total number of fine mesh intervals in "z"

fprintf(fid,’kt= %i\n’,kt);

 

iquad = 5;       % The source of the quadrature constants. Consult

                 %  PARTISN manual

maxlcm = 50000000;

fprintf(fid,’maxlcm= %i\n’,maxlcm);

fprintf(fid,’iquad= %i\n’,iquad);

 

 

%Alright, you’re done, You just need to tell PARTISN.

 

% Start BLOCK II

% block II contains the geometry information

fprintf(fid,’  T\n’); 

%write the dillimeter lines to separate this block from the others.

fprintf(fid,’/\n’);

fprintf(fid,[’/******************************** B L O C K II *************’...

    ’********************\n’]);

fprintf(fid,’/\n’);

fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);

fprintf(fid,’/ PLEASE CONSULT THAT FILE AND THE PARTISN MANUAL FOR MORE DETAILED\n’);

fprintf(fid,’/ EXPLANATION OF WHAT THESE VARIABLES ARE.\n’);
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%Okay, now write out the xmesh variable. This is the same as xGrid

% in my Matlab implementation. Okay, this is how this will work. I

% will write the data in lines that contain 5 values. The first

% line will be written to contain the variable name, then I will

% loop through and write all the full length lines that contain

% five values. After the loop, I will write the line that contains

% the remainder of the values that don’t fit on a full 5 value

% line. Remember that the NxMax, and corresponding y and z, values

% are for the number of voxels that in that dimension. They need to

% incremented once to then correspond to the number of grid lines.

 

%**********************************

%**********************************

%This is for xmesh

xStart = 1;

xPrintNum = 5.0;

xTimes = floor((NxMax+1)/xPrintNum); %How many full length lines that contain

                                 % five values.

xRemain = (NxMax+1)−xTimes*xPrintNum;%The remainder to be written

                                 % on the last line

%Write the first line                                 

fprintf(fid,’    xmesh=’);fprintf(fid,’%12.4e’,xGrid(xStart:xStart+xPrintNum−1));fprintf(fid,’\n’);

xTimes = xTimes−1;

xStart = xStart+xPrintNum;

%Write the main body, minus the remainder line

for i=1:xTimes

    fprintf(fid,’          ’);fprintf(fid,’%12.4e’,xGrid(xStart:xStart+xPrintNum−1));fprintf(fid,’\n’);

    xStart = xStart+xPrintNum;

end

%Write the remainder line

fprintf(fid,’          ’);fprintf(fid,’%12.4e’,xGrid(xStart:xStart+xRemain−1));fprintf(fid,’\n’);

 

%**********************************

%**********************************

%This is for ymesh

yStart = 1;

yPrintNum = 5.0;

yTimes = floor((NyMax+1)/yPrintNum); %How many full length lines that contain

                                 % five values.

yRemain = (NyMax+1)−yTimes*yPrintNum;%The remainder to be written

                                 % on the last line
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%Write the first line                                 

fprintf(fid,’    ymesh=’);fprintf(fid,’%12.4e’,yGrid(yStart:yStart+yPrintNum−1));fprintf(fid,’\n’);

yTimes = yTimes−1;

yStart = yStart+yPrintNum;

%Write the main body, minus the remainder line

for i=1:yTimes

    fprintf(fid,’          ’);fprintf(fid,’%12.4e’,yGrid(yStart:yStart+yPrintNum−1));fprintf(fid,’\n’);

    yStart = yStart+yPrintNum;

end

%Write the remainder line

fprintf(fid,’          ’);fprintf(fid,’%12.4e’,yGrid(yStart:yStart+yRemain−1));fprintf(fid,’\n’);

 

%**********************************

%**********************************

%This is for zmesh

zStart = 1;

zPrintNum = 5.0;

zTimes = floor((NzMax+1)/zPrintNum); %How manz full length lines that contain

                                 % five values.

zRemain = (NzMax+1)−zTimes*zPrintNum;%The remainder to be written

                                 % on the last line

%Write the first line                                 

fprintf(fid,’    zmesh=’);fprintf(fid,’%12.4e’,zGrid(zStart:zStart+zPrintNum−1));fprintf(fid,’\n’);

zTimes = zTimes−1;

zStart = zStart+zPrintNum;

%Write the main bodz, minus the remainder line

for i=1:zTimes

    fprintf(fid,’          ’);fprintf(fid,’%12.4e’,zGrid(zStart:zStart+zPrintNum−1));fprintf(fid,’\n’);

    zStart = zStart+zPrintNum;

end

%Write the remainder line

fprintf(fid,’          ’);fprintf(fid,’%12.4e’,zGrid(zStart:zStart+zRemain−1));fprintf(fid,’\n’);

 

%**********************************

%**********************************

%Now I need to write the number of fine mesh voxels that will be

%within the coarse mesh voxels. This will be easy, using the

%PARTISN quick and convenient notation. I will not give an

%explanation here of what this means. The user should consult the

%PARTISN manual.

fprintf(fid,’    xints= f1,  yints= f1,  zints= f1\n’);
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%**********************************

%**********************************

%Okay, now I need to write out the zones variable...

%This is going to get VERY MESSY!!!!. According to PARTISN

% nomenclature, each x line for y and z is a "string" of array

% input. "zones" is read in one "string" at a time, so I will need

% to write out one "string" at a time. Also, PARTISN only reads out

% to the 80th character, so I need to keep it within 80 characters

% per line.

 

%set the prefix for the line to be written

% find your current length

% This is the very first "string", so I need to change what

% my prefix is.

prefix = ’    zones=’;

lineStr = prefix;

prefix = ’          ’;

lenCur = length(prefix);

fprintf(’Writing the Zones Variable\n’);

for k=1:NzMax;

    if mod(k,10) == 0

        fprintf(’ k = %g\n’,k);

    end

    for j=1:NyMax

        %Give the initial value of the value holder

        ind = 1;

        valHold = zones(ind,j,k);

        KEEP_GOING = 1;

        while(KEEP_GOING) %This will loop until the current string

                          % has breen written

            %Okay, I need to find how many values have the same

            % value as "valHold" in a row

            SAME = 1;

            count = 1;

            while(SAME && ind < NxMax)

                ind = ind+1;

                if(zones(ind,j,k) == valHold)

                    %If yes, then increment ind and count and keep looking

                    count = count+1;

                else

                    %If no, then kill this round and set it out.

                    ind = ind−1;
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                    SAME = 0;

                end

            end

            %Okay, so here, I know how many times the "valHold"

            % value has been repeated, and I know the place of the

            % next value. Let’s work the former first.

            if(count > 1)

                %If the count is greater than 1, then the repeated

                % syntax needs to be used to reduce the space needed

                % to represent the geometry in the file.

                tmpStr = sprintf(’%3ir%−2i’,count,valHold);

                tmpStr = deblank(tmpStr);

            else

                %Then print a simple, single value is there is only

                % one of them.

                tmpStr = sprintf(’%3i’,valHold);

% $$$                 fprintf(’valHold = %g\n’,valHold)

% $$$                 fprintf(’ind = %3i\n’,ind);

% $$$                 fprintf(’j = %3i\n’,j);

% $$$                 fprintf(’k = %3i\n’,k);

% $$$                 fprintf(’zones(ind,j,k) = %g\n’,zones(ind,j,k));

% $$$                 pause

            end

            if ind == NxMax

                %This means that it found the end of the

                % "string", or line of the x values. 

                tmpStr = [tmpStr ’;’];

                %Since we found the end of the "string" we need to

                % get out of the loop, and move onto the next y

                % place and therefore, the next "string".

                KEEP_GOING = 0;

            else

                %Since, I am not at the end of the "string," I need

                % pick up the next value to find if it is repeated.

                ind = ind+1;

                valHold = zones(ind,j,k);

            end

            %Contatenate the new string (character string) onto the

            % line for writting it.

            lineStr = [lineStr ’ ’ tmpStr];

            if(length(lineStr) > 72)

                %If the line is greater than 72 characters, than
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                % write it to the file and set up the next line.

                fprintf(fid,[lineStr ’\n’]);

                lineStr = prefix;

            end

        end

% $$$         fflush(fid);

        

    end

end

% At the end of the line, there will be a partial row that is under

% the 72 character limit, but is a complete row, as it contains the

% rest of the data. This also needs to be written.

if length(lineStr) > length(prefix) 

    fprintf(fid,[lineStr ’\n’]);

end

 

 

% $$$ fprintf(fid,’    zones=’);fprintf(fid,’%3i’,zones(:,1,1));fprintf(fid,’;\n’);

% $$$ yStart = 2;

% $$$ for k=1:NzMax

% $$$     for j=yStart:NyMax

% $$$         fprintf(fid,’          ’);fprintf(fid,’%3i’,zones(:,j,k));fprintf(fid,’;\n’);

% $$$     end

% $$$     yStart = 1;

% $$$ end

 

 

%END PRINTING ZONES DATA

%**********************************

%**********************************

%Alright, you’re done, You just need to tell PARTISN.

 

fprintf(fid,’  T\n’);

 

%*******************************************************************************

%*******************************************************************************

% START BLOCK III

% block III contains the nuclear data

%write the dillimeter lines to separate this block from the others.

fprintf(fid,’/\n’);

fprintf(fid,’/******************************** B L O C K III ********************************\n’);

fprintf(fid,’/\n’);
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fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);

fprintf(fid,’/ PLEASE CONSULT THAT FILE AND THE PARTISN MANUAL FOR MORE DETAILED\n’);

fprintf(fid,’/ EXPLANATION OF WHAT THESE VARIABLES ARE\n’);

lib=’xslib’; 

libname=’DG8P5’; %Define the cross−section library

                                      % type the library name

fprintf(fid,’lib=%s; libname=%s\n’,lib,libname);

maxord=5;  %Legendre Scattering Order (This value represents the

           % order of the Legendre polynomial expansion. The higher

           % this number, the more accurate the scattering is.

fprintf(fid,’maxord=%i\n’,maxord);

ihm=ngroup+3;   %Table length: # of Energy Group bound + 3

fprintf(fid,’ihm=%i\n’,ihm);

iht=3;     %Position number of the total cross−section.

fprintf(fid,’iht=%i\n’,iht);

ifido=0;   % 1: Fixed Field FIDO format: TRANSX "iout" = 3

           % 0: DTF format from NJOY directly

fprintf(fid,’ifido=%i\n’,ifido);

ititl=1;   %Specifies that there is a header to each table

fprintf(fid,’ititl=%i\n’,ititl);

% $$$ i2lp1=0;   %Specifies that the extra 2L+1 is NOT included in this

% $$$            % file format 0/1: no/yes

% $$$ fprintf(fid,’i2lp1=%i\n’,i2lp1);

savbxs=1;  %Save the binary BXSLIB file for subsequent runs.

fprintf(fid,’savbxs=%i\n’,savbxs);

%*****************************************

names=[’hydro1’; ’carbn6’;’nitro7’; ’oxygn8’; ’alum13’; ’argn18’; ’iodn53’; ...

       ’csum55’];

%Print the "names" variable to the file

[ii,jj]=size(names);

lineStr = ’names=’;

prefix  = ’      ’;

for i=1:ii

    lineStr = [lineStr ’ "’ names(i,:) ’"’];

    if length(lineStr) > 72

        fprintf(fid,[lineStr ’\n’]);

        lineStr = prefix;

    end

end

fprintf(fid,[lineStr ’\n’]);

%*****************************************

%124 equally spaced
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% $$$ ebound = [1.0000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 ...

% $$$           6.0000E+03 7.0000E+03 8.0000E+03 9.0000E+03 1.0000E+04 ...

% $$$           1.1000E+04 1.2000E+04 1.3000E+04 1.4000E+04 1.5000E+04 ...

% $$$           1.6000E+04 1.7000E+04 1.8000E+04 1.9000E+04 2.0000E+04 ...

% $$$           2.1000E+04 2.2000E+04 2.3000E+04 2.4000E+04 2.5000E+04 ...

% $$$           2.6000E+04 2.7000E+04 2.8000E+04 2.9000E+04 3.0000E+04 ...

% $$$           3.1000E+04 3.2000E+04 3.3000E+04 3.4000E+04 3.5000E+04 ...

% $$$           3.6000E+04 3.7000E+04 3.8000E+04 3.9000E+04 4.0000E+04 ...

% $$$           4.1000E+04 4.2000E+04 4.3000E+04 4.4000E+04 4.5000E+04 ...

% $$$           4.6000E+04 4.7000E+04 4.8000E+04 4.9000E+04 5.0000E+04 ...

% $$$           5.1000E+04 5.2000E+04 5.3000E+04 5.4000E+04 5.5000E+04 ...

% $$$           5.6000E+04 5.7000E+04 5.8000E+04 5.9000E+04 6.0000E+04 ...

% $$$           6.1000E+04 6.2000E+04 6.3000E+04 6.4000E+04 6.5000E+04 ...

% $$$           6.6000E+04 6.7000E+04 6.8000E+04 6.9000E+04 7.0000E+04 ...

% $$$           7.1000E+04 7.2000E+04 7.3000E+04 7.4000E+04 7.5000E+04 ...

% $$$           7.6000E+04 7.7000E+04 7.8000E+04 7.9000E+04 8.0000E+04 ...

% $$$           8.1000E+04 8.2000E+04 8.3000E+04 8.4000E+04 8.5000E+04 ...

% $$$           8.6000E+04 8.7000E+04 8.8000E+04 8.9000E+04 9.0000E+04 ...

% $$$           9.1000E+04 9.2000E+04 9.3000E+04 9.4000E+04 9.5000E+04 ...

% $$$           9.6000E+04 9.7000E+04 9.8000E+04 9.9000E+04 1.0000E+05 ...

% $$$           1.0100E+05 1.0200E+05 1.0300E+05 1.0400E+05 1.0500E+05 ...

% $$$           1.0600E+05 1.0700E+05 1.0800E+05 1.0900E+05 1.1000E+05 ...

% $$$           1.1100E+05 1.1200E+05 1.1300E+05 1.1400E+05 1.1500E+05 ...

% $$$           1.1600E+05 1.1700E+05 1.1800E+05 1.1900E+05 1.2000E+05 ...

% $$$           1.2100E+05 1.2200E+05 1.2300E+05 1.2400E+05 1.2500E+05];         

%G10 with weighting function

% $$$ ebound = [2.5000E+03 2.0000E+04 3.0000E+04 3.5000E+04 4.0000E+04 5.4000E+04 6.2000E+04 7.0000E+04 8.7000E+04 

1.0500E+05 1.2500E+05];

%G8 with weighting function

ebound = [2.0000E+03 2.2000E+04 3.0000E+04 4.0000E+04 5.4000E+04 6.2000E+04 7.0000E+04 9.0000E+04 1.2500E+05];

%173 adjusted G210

% $$$ ebound=[1000.0 1063.0 1125.0 1250.0 1375.0 1500.0 1625.0 1750.0 1875.0 2000.0...

% $$$         2121.0 2242.0 2484.0 2535.0 2586.0 2793.0 3000.0 3066.0 3310.0 3554.0...

% $$$         3851.0 4000.0 4250.0 4500.0 4750.0 4966.4 5465.1 5989.2 6539.0 7112.0... 

% $$$         7708.9 8000.0 8332.8 8500.0 8978.9 9200.0 9658.6 10367.1 10760.0 11215.4... 

% $$$         11563.7 11918.7 12099.8 12283.9 12824.1 13418.5 13879.9 14352.8 14839.3... 

% $$$         15000.0 15200.0 15860.0 16900.0 17930.0 18970.0 20000.0 21250.0 22500.0... 

% $$$         23750.0 25140.0 26250.0 27000.0 27250.0 27600.0 28000.0 28200.0 28500.0... 

% $$$         28700.0 29000.0 29250.0 29500.0 29750.0 30000.0 30500.0 31000.0 31500.0... 

% $$$         32000.0 32500.0 33169.4 33500.0 34000.0 34500.0 34750.0 35000.0 35550.0... 

% $$$         35984.6 36250.0 36500.0 36750.0 37000.0 37250.0 37500.0 37750.0 38000.0... 

% $$$         38250.0 38500.0 38750.0 39000.0 39250.0 39500.0 39750.0 40000.0 40500.0... 
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% $$$         41000.0 41250.0 41500.0 41750.0 42000.0 42250.0 42500.0 42750.0 43000.0... 

% $$$         43250.0 43500.0 43750.0 44000.0 44250.0 45000.0 46000.0 47500.0 48500.0... 

% $$$         50000.0 51000.0 52000.0 53000.0 54000.0 55000.0 56000.0 56500.0 57000.0 57500.0 58000.0 58500.0... 

% $$$         59000.0 59500.0 60000.0 60500.0 61000.0 62000.0 63000.0 64000.0 65000.0 65500.0 66000.0 66500.0 67000.0 

67500.0...

% $$$         68000.0 68500.0 69000.0 69250.0 69525.0 69750.0 70000.0 72000.0...

% $$$         76111.0 77500.0 80724.9 83102.3 86000.0 88000.0 90000.0 91000.0 92000.0... 

% $$$         93000.0 94000.0 95000.0 96000.0 97000.0 98000.0 99000.0 100000.0... 

% $$$         112500.0 125000.0]; 

printEnergy = 1;

if printEnergy

    

    if(octave)

        fidE = fopen([’/media/SEAGATE/RESEARCH/home/ptran/PTRAN9/’ ...

                      ’ptran_9_50_Try2/input/8GroupBounds06Feb2013.dat’],’w’);

    else

        fidE = fopen([’/media/RESEARCH/home/ptran/PTRAN9/’ ...

                      ’ptran_9_50_Try2/input/’ ...

                      ’8GroupBounds22Mar2013FG.dat’],’w’);

    end

 

    fprintf(fidE,’8 PARTISN energy group structure for G7Fido\n’);

    fprintf(fidE,’%d\n’,ngroup+1);

    %The energies must be converted from eV to keV

    for i=1:length(ebound)

       fprintf(fidE,’%12.5e\n’,ebound(i)*0.001);

    end

 

    %I also must include the x, y, and z grid as well, 

    % not forgetting to convert from cm to mm for PTRAN.

    fprintf(fidE,’xGrid, %d\n’,it+1);

    for i=1:it+1

        fprintf(fidE,’%12.5e\n’,xGrid(i)*10.0);

    end

    fprintf(fidE,’yGrid, %d\n’,jt+1);

    for j=1:jt+1

        fprintf(fidE,’%12.5e\n’,yGrid(j)*10.0);

    end

    fprintf(fidE,’zGrid, %d\n’,kt+1);

    for k=1:kt+1

        fprintf(fidE,’%12.5e\n’,zGrid(k)*10.0);

    end
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% $$$     fclose(fidE);

 

end

 

 

%AJS 23 Octoboer 2012

% I need to flip the ebound variable before I write this to file

%  since PARTISN works from largest to smallest.

eboundTmp = 0.0*ebound;

for n=1:length(ebound)

    eboundTmp(n) = ebound(length(ebound)−n+1);

end

clear ebound

ebound = eboundTmp;

 

%Print the "ebound" variable to file

lineStr = ’ebound=’;

prefix  = ’       ’;

for i=1:length(ebound)

    tmpStr=sprintf(’ %12.5E’,ebound(i));

    lineStr = [lineStr tmpStr];

    if length(lineStr) > 68 

        fprintf(fid,[lineStr ’\n’]);

        lineStr = prefix;

    end

end

fprintf(fid,[lineStr ’\n’]);

%*****************************************

 

 

%Alright, you’re done, You just need to tell PARTISN.

 

fprintf(fid,’  T\n’); 

%*******************************************************************************

%*******************************************************************************

% START BLOCK IV

% block IV contains the material mixing specifics

%write the dillimeter lines to separate this block from the others.

fprintf(fid,’/\n’);

fprintf(fid,’/******************************** B L O C K IV *********************************\n’);

fprintf(fid,’/\n’);

fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);
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fprintf(fid,’/ PLEASE CONSULT PARTISN MANUAL FOR MORE DETAILED EXPLANATION\n’);

fprintf(fid,’/ OF WHAT THESE VARIABLES ARE AND THEIR FORMAT\n’);

fprintf(fid,’matspec=atfrac /Mix the variables based on atomic fractions.\n’);

fprintf(fid,’               / This means that the mixing input\n’);

fprintf(fid,’               / for matls will be in mole fractions.\n’);

fprintf(fid,[’atwt=hydro1 1.0 carbn6 11.74 nitro7 14.0 oxygn8 16.0 alum13 26.98 \n’]);

fprintf(fid,’     argn18 39.95 iodn53 126.90 csum55 132.91;\n’);

fprintf(fid,’                          /define the atomic weights of the materials\n’);

fprintf(fid,’                          / found in the xslib cross−section file.\n’);

fprintf(fid,’matls= waterm  hydro1  0.6667\n’);

fprintf(fid,’               oxygn8  0.3333;\n’);

fprintf(fid,’\n’);

fprintf(fid,’       alumm   alum13  1.0000;\n’);

fprintf(fid,’\n’);

fprintf(fid,’       airm    nitro7  8.07081−1\n’);

fprintf(fid,’               oxygn8  1.89534−1\n’);

fprintf(fid,’               argn18  3.38488−3;\n’);

fprintf(fid,’\n’);

fprintf(fid,’       csim    iodn53  0.5000\n’);

fprintf(fid,’               csum55  0.5000;\n’);

fprintf(fid,’\n’);

fprintf(fid,’       adi3m   hydro1  6.1307−1\n’);

fprintf(fid,’               carbn6  3.0201−1\n’);

fprintf(fid,’               nitro7  1.9010−2\n’);

fprintf(fid,’               oxygn8  6.5910−2;\n’);

fprintf(fid,’\n’);

fprintf(fid,’assign= water  waterm  1.00;\n’);

fprintf(fid,’        alum   alumm   2.70;\n’);

fprintf(fid,’        air    airm    1.20−3;\n’);

fprintf(fid,’        csi    csim    4.51;\n’);

fprintf(fid,’        adi3   adi3m   0.930;\n’);

%Alright, you’re done, You just need to tell PARTISN.

 

fprintf(fid,’  T\n’); 

 

%*******************************************************************************

%*******************************************************************************

% START BLOCK V

% Solver input

%write the dillimeter lines to separate this block from the others.

fprintf(fid,’/\n’);

fprintf(fid,’/******************************** B L O C K V **********************************\n’);
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fprintf(fid,’/\n’);

fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);

fprintf(fid,’/ PLEASE CONSULT THAT FILE AND THE PARTISN MANUAL FOR A MORE DETAILED\n’);

fprintf(fid,’/ EXPLANATION OF WHAT THESE VARIABLES ARE\n’);

 

%Set the desired Parameters

ievt=0;      %What type of calculation? "0" means source. This should never 

            % change for PTRAN 

fprintf(fid,’ievt= %i\n’,ievt);

isct=maxord;      %Legendre Scattering Order.

fprintf(fid,’isct= %i\n’,isct);

ith=1;       %"0" for direct, "1" for ADJOINT

fprintf(fid,’ith= %i\n’,ith);

ibl=0;       %Left Boundary Condition

            % : 0/1/2/3/4 =

            % vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibl= %i\n’,ibl);

ibr=0;       %Right Boundary Condition

            % : 0/1/2/3/4 = vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibr= %i\n’,ibr);

ibt=0;       %Top Boundary Condition

            % : 0/1/2/3/4 = vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibt= %i\n’,ibt);

ibb=0;       %Bottom Boundary Condition

            % : 0/1/2/3/4 = vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibb= %i\n’,ibb);

ibfrnt=0;    %Front Boundary Condition

            % : 0/1/2/3/4 = vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibfrnt= %i\n’,ibfrnt);

ibback=0;    %Back Boundary Condition

            % : 0/1/2/3/4 = vacuum/reflective/periodic/white/rotational

fprintf(fid,’ibback= %i\n’,ibback);

epsi=1.0E−10; %Global Convergence Precision 

fprintf(fid,’epsi= %7.2E\n’,epsi);

iitl=20;     %Maximum number of inner group iterations "at first." I don’t 

            % know what "at first" means

fprintf(fid,’iitl= %i\n’,iitl);

srcacc=’dsa’;  %Diffision source acceleration

fprintf(fid,’srcacc= %s\n’,srcacc);

diffsol=’mg’;  %Diffusion operator solver: "mg" = multi−grid solver with 

            % 3 line relaxation

fprintf(fid,’diffsol= %s\n’,diffsol);
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fluxp=1;     %Final Flux Print: 0/1/2/ = none/isotropic

             %(scalar)/moments

fprintf(fid,’fluxp= %i\n’,fluxp);

kprint=1;    %The K−Plane the fluxes will be output for

fprintf(fid,’kprint= %i\n’,kprint);

xsectp=0;    %Final cross−section output: 0/1/2 =

             %none/principal/all

fprintf(fid,’xsectp= %i\n’,xsectp);

sourcp=0;    %Final source output: 0/1/2/3 = none/as

             %input/normalized/both

fprintf(fid,’sourcp= %i\n’,sourcp);

norm=1.0;    %Source Normalization

fprintf(fid,’norm= %12.5E\n’,norm);

trnsol=1;    %Transport solver type: "1" for "seqdp". I really have no idea 

            % why I’m using this.

fprintf(fid,’trnsol= %i\n’,trnsol);

nodal=0;     %Spatial differencing scheme: "0" = Standard,

             %low−order

fprintf(fid,’nodal= %i\n’,nodal);

wdamp=’f3.0’;  %????????????????????????????????????/

fprintf(fid,’wdamp= %s\n’,wdamp);

npey=2; npez=1; nchunk=7;%parallel details: use just one processor

fprintf(fid,’npey= %i npez= %i nchunk= %i\n’,npey,npez,nchunk);

timedep=0;   %Run in time dependent mode: 0/1 = no/yes !!!This should 

            % always be "0"

fprintf(fid,’timedep= %i\n’,timedep);

%/fcsrc=umcflux fcrstrt=0 fcnray=25440 fcntr=20 fcseed=0 fcwco=0.1

            %Data for forced collisions. Currently this 

            % is here for reference purposes only

 

if(ith == 0)

    %This defines the volumetric source for forward calculations.

    % I need to read in the spectrum data.

    spectrumFile = [’/media/RESEARCH/home/ptran/PTRAN9/ptran_9_50_Try2/’ ...

                ’data/CAX_spect_125kVp.txt’]

    fidSpect = fopen(spectrumFile,’r’);

    %read in the spectrum description

    dummy=fscanf(fidSpect,’%s’,[1,3]);

    %read in the number of spectrum values

    nptSpect = fscanf(fidSpect,’%d’,[1,1]);

    %read in the spectrum data.

    % The first row contains the energy data, while the second row
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    % contains the spectrum data.

    ptranSpect = fscanf(fidSpect,’%f’,[2 nptSpect]);

    %Since I don’t like dealing with rows, I will transpose it so

    % that the like data is in columns.

    ptranSpect = ptranSpect’;

    %Now I have to normalize the data properly and get it into the

    % correct units.

    %The energy in PTRAN is in keV. For PARTISN it needs to be eV.

    ptranSpect(:,1) = ptranSpect(:,1)*1000;

    %I also need to normalize the spectrum data.

    sumSpect = trapz(ptranSpect(:,1),ptranSpect(:,2));

    ptranSpect(:,2) = ptranSpect(:,2)/sumSpect;

    

    %Okay, now I have the ptran Spectrum. I now need to interpolate

    % the ptran Spectrum onto the PARTISN energy Grid

    %First I need to find the PARTISN energy grid centers.

    numGroups = ngroup;

    NMQ = (maxord+1)*(maxord+1);

    energyGroupCenters = (ebound(1:end−1)+ebound(2:end))/2;

    ptranSpectGroup = interp1(ptranSpect(:,1),ptranSpect(:,2),energyGroupCenters,’linear’,0.0);

 

    plot(energyGroupCenters,ptranSpectGroup,’b−’);

    

    

    %AJS 25 June 2012

    % Let’s do a boundary source for this as well.

    %This defines the boundary source for adjoint calculations

    sileft = zeros(ngroup,jt*kt);

    sirite = zeros(ngroup,jt*kt);

    sibott = zeros(ngroup,it*kt);

    sitop  = zeros(ngroup,it*kt);

    sifrnt = zeros(ngroup,it*jt);

    siback = zeros(ngroup,it*jt);

    

    %this could be much more difficult, complex, and much more general

    %to implement. for now, I’m just doing it the easy way.

    % I ned to do some alterations of sibott.

    count = 0;

    Normalization = 9.01754E+13/25e−3;

    Normalization = 1.0;

    for i = 1:it

        for j = 1:jt
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            count = count+1;

            if i == ceil(it/2) && j == ceil(jt/2)

                sifrnt(:,count) = ptranSpectGroup(:)*Normalization;

            end

        end        

    end

    %Write the left and right source declarations (x−axis)

    tmpStr = sprintf(’%i’,jt*kt−1);

    fprintf(fid,[’sileft= f0; ’ tmpStr ’Y1;\n’]);

    fprintf(fid,[’sirite= f0; ’ tmpStr ’Y1;\n’]);

 

    tmpStr = sprintf(’%i’,it*kt−1);    

    fprintf(fid,[’sibott=  f0; ’ tmpStr ’Y1;\n’]);

    fprintf(fid,[’sitop=  f0; ’ tmpStr ’Y1;\n’]);

    

    %Write the front and back source declarations (z−axis)

    %Write the top and bottom source declarations (y−axis)

    lineStr = ’sifrnt=’;

    prefix  = ’       ’;

    for j=1:it*jt;

        if mod(j,30) == 0

            fprintf(’j = %g\n’,j);

        end

        %Give the initial value of the value holder

        ind = 1;

        valHold = sifrnt(ind,j);

        KEEP_GOING = 1;

        while(KEEP_GOING) %This will loop until the current string

                          % has breen written

                          %Okay, I need to find how many values have the same

                          % value as "valHold" in a row

            SAME = 1;

            count = 1;

            while(SAME && ind < ngroup)

                ind = ind+1;

                if(sifrnt(ind,j) == valHold)

                    %If yes, then increment ind and count and keep looking

                    count = count+1;

                else

                    %If no, then kill this round and set it out.

                    ind = ind−1;

                    SAME = 0;
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                end

            end

            %Okay, so here, I know how many times the "valHold"

            % value has been repeated, and I know the place of the

            % next value. Let’s work the former first.

            if(count > 1)

                %If the count is greater than 1, then the repeated

                % syntax needs to be used to reduce the space needed

                % to represent the geometry in the file.

                tmpStr = sprintf(’%3ir%−12.5E’,count,valHold);

                tmpStr = deblank(tmpStr);

            else

                %Then print a simple, single value is there is only

                % one of them.

                tmpStr = sprintf(’%12.5E’,valHold);

% $$$                 fprintf(’valHold = %g\n’,valHold)

% $$$                 fprintf(’ind = %3i\n’,ind);

% $$$                 fprintf(’j = %3i\n’,j);

% $$$                 fprintf(’k = %3i\n’,k);

% $$$                 fprintf(’zones(ind,j,k) = %g\n’,zones(ind,j,k));

% $$$                 pause

            end

            if ind == ngroup

                %This means that it found the end of the

                % "string", or line of the x values. 

                tmpStr = [tmpStr ’;’];

                %Since we found the end of the "string" we need to

                % get out of the loop, and move onto the next y

                % place and therefore, the next "string".

                KEEP_GOING = 0;

            else

                %Since, I am not at the end of the "string," I need

                % pick up the next value to find if it is repeated.

                ind = ind+1;

                valHold = sifrnt(ind,j);

            end

            %Contatenate the new string (character string) onto the

            % line for writting it.

            lineStr = [lineStr ’ ’ tmpStr];

            if(length(lineStr) > 68)

                %If the line is greater than 72 characters, than

                % write it to the file and set up the next line.
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                fprintf(fid,[lineStr ’\n’]);

                lineStr = prefix;

            end

        end

% $$$         fflush(fid);

        

    end

    % At the end of the line, there will be a partial row that is under

    % the 72 character limit, but is a complete row, as it contains the

    % rest of the data. This also needs to be written.

    if length(lineStr) > length(prefix) 

        fprintf(fid,[lineStr ’\n’]);

    end

    tmpStr = sprintf(’%i’,it*jt−1);

% $$$     fprintf(fid,[’sifrnt= f0; ’ tmpStr ’Y1;\n’]);

    fprintf(fid,[’siback= f0; ’ tmpStr ’Y1;\n’]);

 

 

 

elseif(ith == 1)

    %This defines the boundary source for adjoint calculations

    sileft = zeros(ngroup,jt*kt);

    sirite = zeros(ngroup,jt*kt);

    sibott = zeros(ngroup,it*kt);

    sitop  = ones(ngroup,it*kt);

    sifrnt = zeros(ngroup,it*jt);

    siback = zeros(ngroup,it*jt);

    

    %This is where I compute my detector response function for my

    % simluation. Now, I must be clear. PARTISN accepts this

    % detector response function as a normalized PDF over the

    % energy bounds you’re interested in. 

    

    %mu is from The NIST XCOM database for CsI. This is the mass

    % attenuation coefficient so it needs to be scaled by density

    % for the detector response function to have the right units.

    density = 4.51; %grams per cm^3

    

    %******************************************************

    %******************************************************

    %AJS 24 Octoboer 2012

    % I’m going to read in the CsI cross−sections from PTRAN, and
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    %  then interplolate on the corresponding energy Group

    %  structure. This interplation would benefit from an assumption

    %  of the flux at the detector to compose a weighting function,

    %  but for now this just uses the midpoint within the energy

    %  group to define the attenuation coefficient. Remember that

    %  PTRAN uses mm for its length unit and PARTISN uses cm, so a

    %  conversion will be done. PARTISN also uses eV instead of KeV

    %  so a corresponding change will also be made there.

    

    % Define which file you’re going to use for the attenuation

    %  coefficient.

    if(octave)

        muFileName = [’/media/SEAGATE/RESEARCH/home/ptran/PTRAN9/’ ...

                      ’ptran_9_50_Try2/dlc146/xsect_CsI.dat’]

    else

        muFileName = [’/media/RESEARCH/home/ptran/PTRAN9/’ ...

                      ’ptran_9_50_Try2/dlc146/xsect_CsI.dat’]

    end

    

    % Open the file for reading

    fidMu = fopen(muFileName,’r’);

    

    % Read in the length of the attenuation energy table

    tableLength = fscanf(fidMu,’%g’,[1 1]);

    

    % Read in the attenuation data. The columns are set up as the

    %  following:

    %  1. Energy in keV

    %  2. The attenuation coefficient in 1/mm

    %  3. The fraction of the attenuation coefficient that is from

    %     photoelectric absorption.

    %  4. The fraction of the attenuation coefficient that is from

    %     coherent scattering.

    %  5. The fraction of the attenuation coefficient that is from

    %     incoherent scattering.

    %  6. The fraction of the attenuation coefficient that is from

    %     pair production.

    

    attenTable = fscanf(fidMu,’%g’,[6 tableLength]);

    % Transpose the array to match PTRAN description

    attenTable = attenTable’;

    % Convert the attenuation table to PARTISN units. Note that this
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    %  only affects the first two columns.

    attenTable(:,1) = attenTable(:,1)*1000;

    attenTable(:,2) = attenTable(:,2)*10;

 

    % Now I need to find the centerpoints of my energy group

    %  structure. ebound has been flipped, so energyGroupCenters

    %  needs to be flipped as well;

    energyGroupCenters = (ebound(1:end−1)+ebound(2:end))/2.0;

    energyGroupCenters = fliplr(energyGroupCenters)’;

    

    % Now I need to find the interpolated values of mu for these

    %  energyGroupCenters. muGroupCenters represents the

    %  attenuation coefficient that corresponds to the

    %  energyGroupCenters. 

    muGroupCenters = interp1(attenTable(:,1),attenTable(:,2), ...

                             energyGroupCenters,’linear’);

% $$$     

% $$$     plot(energyGroupCenters,muGroupCenters’,’r*’);

% $$$     hold on

% $$$     plot(attenTable(:,1),attenTable(:,2),’b−o’);

% $$$     hold off

% $$$     asdf;

% $$$     

% $$$     mu = [5.628E+1 1.690E+1 2.056E+1 2.000E+1 1.500E+1 7.900E+0 ...

% $$$           5.586E+0 3.514E+0 2.400E+0 1.200E+0]*density;

     

    %This is not used for the angular dependent source.

    detectorResponseFunction = energyGroupCenters.* ...

        muGroupCenters;

 

    %I now need to normalize the response function

    DRF_sum = sum(detectorResponseFunction);

% $$$     detectorResponseFunction = detectorResponseFunction/DRF_sum;

    

    %We need to flip this order for PARTISN

    DRF_tmp = 0.0*detectorResponseFunction;

    for n = 1:length(detectorResponseFunction)        

        DRF_tmp(n) = ...

            detectorResponseFunction(length(detectorResponseFunction)−n+1);

    end

    clear detectorResponseFunction

    detectorResponseFunction = DRF_tmp;
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    %******************************************************

    %******************************************************

 

    

    %write the sum to the printEnergy file

    if(printEnergy)

        fprintf(fidE,’ DRF_sum\n’);

        fprintf(fidE,’%g\n’,DRF_sum);

        fclose(fidE);

        fprintf(’ energy group file printed\n’)

    end

    

    

    

    %******************************************************

    %******************************************************

    %AJS 08 November 2012

    % I need to add the angular dependence of the detector response

    %  function. This is a cos(theta) detector. This has been split

    %  up for options using an isotropic source, or an angular

    %  dependent source. 

    

    isotropic = 0;

    if(isotropic ~= 1)

        %The angular dependent source has been picked. 

        % This will be fun.

        %First, we need to define xi for all the steps of the

        %quadrature triangle. Note that this is only good for IQUAD

        %== 5.

        if(iquad ~= 5)

            fprintf(’***************************\n’);

            fprintf(’***************************\n’);

            fprintf(’ERROR\n’);

            fprintf(’ Value of IQUAD does not equal 5\n’);

            fprintf(’  Only IQUAD = 5 is currently supported\n’);

            asdf;

        end

        %Compute the number of angles per octant;

        mm = isn*(isn+2)/8;

        %These cos(theta)’s are taken from the PARTISN output file

        %under the heading of "key start sn constants". They are
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        %the xi value, and represent the cos(theta), where theta is

        %the angle from direction vector to the x−y plane. Please

        %consult the PARTISN input manaul for more detailed

        %information under the seciton describing the quadrature

        %deails in the methods section.

        if(isn == 16)

            xi = [0.98940093E+00 ...

                  0.94457502E+00 0.94457502E+00 ...

                  0.86563120E+00 0.86563120E+00 0.86563120E+00 ...

                  0.75540441E+00 0.75540441E+00 0.75540441E+00 0.75540441E+00 ...

                  0.61787624E+00 0.61787624E+00 0.61787624E+00 0.61787624E+00 0.61787624E+00 ...

                  0.45801678E+00 0.45801678E+00 0.45801678E+00 0.45801678E+00 0.45801678E+00 0.45801678E+00 ...

                  0.28160355E+00 0.28160355E+00 0.28160355E+00 0.28160355E+00 0.28160355E+00 0.28160355E+00 0.28160355

E+00 ...

                  0.95012510E−01 0.95012510E−01 0.95012510E−01 0.95012510E−01 0.95012510E−01 0.95012510E−01 0.95012510

E−01 0.95012510E−01 ];

        elseif(isn == 32)

            xi = [0.99726386E+00 ...

                  0.98561151E+00 0.98561151E+00 ...

                  0.96476226E+00 0.96476226E+00 0.96476226E+00 ...

                  0.93490608E+00 0.96476226E+00 0.96476226E+00 0.96476226E+00 ...

                  0.89632116E+00 0.89632116E+00 0.89632116E+00 0.89632116E+00 0.89632116E+00 ...

                  0.84936761E+00 0.89632116E+00 0.89632116E+00 0.89632116E+00 0.89632116E+00 0.89632116E+00 ...

                  0.79448380E+00 0.79448380E+00 0.79448380E+00 0.79448380E+00 0.79448380E+00 0.79448380E+00 0.79448380

E+00 ...

                  0.73218212E+00 0.73218212E+00 0.73218212E+00 0.73218212E+00 0.73218212E+00 0.73218212E+00 0.73218212

E+00 0.73218212E+00 ...

                  0.66304427E+00 0.66304427E+00 0.66304427E+00 0.66304427E+00 0.66304427E+00 0.66304427E+00 0.66304427

E+00 0.66304427E+00 0.66304427E+00 ...

                  0.58771576E+00 0.58771576E+00 0.58771576E+00 0.58771576E+00 0.58771576E+00 0.58771576E+00 0.58771576

E+00 0.58771576E+00 0.58771576E+00 0.58771576E+00 ...

                  0.50689991E+00 0.50689991E+00 0.50689991E+00 0.50689991E+00 0.50689991E+00 0.50689991E+00 0.50689991

E+00 0.50689991E+00 0.50689991E+00 0.50689991E+00 0.50689991E+00 ...

                  0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128

E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 0.42135128E+00 ...

                  0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860

E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 0.33186860E+00 ...

                  0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736

E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 0.23928736E+00 ...

                  0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196

E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 0.14447196E+00 

0.14447196E+00 ...
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                  0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666

E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 0.48307666E−01 

0.48307666E−01 0.48307666E−01];                  

        elseif(isn == 64)

            xi = [0.99930504E+00 ...

                  0.99634012E+00 0.99634012E+00 ...

                  0.99101337E+00 0.99101337E+00 0.99101337E+00 ...

                  0.98333625E+00 0.98333625E+00 0.98333625E+00 0.98333625E+00 ...

                  0.97332683E+00 0.97332683E+00 0.97332683E+00 0.97332683E+00 0.97332683E+00 ...

                  0.96100880E+00 0.96100880E+00 0.96100880E+00 0.96100880E+00 0.96100880E+00 0.96100880E+00 ...

                  0.94641137E+00 0.94641137E+00 0.94641137E+00 0.94641137E+00 0.94641137E+00 0.94641137E+00 0.94641137

E+00 ...

                  0.92956917E+00 0.92956917E+00 0.92956917E+00 0.92956917E+00 0.92956917E+00 0.92956917E+00 0.92956917

E+00 0.92956917E+00 ...

                  0.91052214E+00 0.91052214E+00 0.91052214E+00 0.91052214E+00 0.91052214E+00 0.91052214E+00 0.91052214

E+00 0.91052214E+00 0.91052214E+00 ...

                  0.88931545E+00 0.88931545E+00 0.88931545E+00 0.88931545E+00 0.88931545E+00 0.88931545E+00 0.88931545

E+00 0.88931545E+00 0.88931545E+00 0.88931545E+00 ...

                  0.86599940E+00 0.86599940E+00 0.86599940E+00 0.86599940E+00 0.86599940E+00 0.86599940E+00 0.86599940

E+00 0.86599940E+00 0.86599940E+00 0.86599940E+00 0.86599940E+00 ...

                  0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930

E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 0.84062930E+00 ...

                  0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532

E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 0.81326532E+00 ...

                  0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236

E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 0.78397236E+00 ...

                  0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991

E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 0.75281991E+00 

0.75281991E+00 ...

                  0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185

E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 0.71988185E+00 

0.71988185E+00 0.71988185E+00 ...

                  0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631

E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 0.68523631E+00 

0.68523631E+00 0.68523631E+00 0.68523631E+00 ...

                  0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547

E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 

0.64896547E+00 0.64896547E+00 0.64896547E+00 0.64896547E+00 ...

                  0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536

E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 

0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 0.61115536E+00 ...

                  0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565



www.manaraa.com

4/16/13 4:21 AM /media/RESEARCH/home/PARTISN/learning/CBCT/NewDTF/PARTISN_gridStructure.m 36 of 46

E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 

0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 0.57189565E+00 ...

                  0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946

E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 

0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 0.53127946E+00 ...

                  0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315

E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 

0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315E+00 0.48940315

E+00 ...

                  0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602

E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 

0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602E+00 0.44636602

E+00 0.44636602E+00 ...

                  0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016

E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 

0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016E+00 0.40227016

E+00 0.40227016E+00 0.40227016E+00 ...

                  0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016

E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 

0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 0.35722016

E+00 0.35722016E+00 0.35722016E+00 0.35722016E+00 ...

                  0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287

E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 

0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287

E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 0.31132287E+00 ...

                  0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716

E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 

0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716

E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 0.26468716E+00 ...

                  0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364

E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 

0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364

E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 0.21742364E+00 ...

                  0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442

E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 

0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442

E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 0.16964442E+00 ...

                  0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282

E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 

0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282

E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 0.12146282E+00 

0.12146282E+00 ...
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                  0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122

E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 

0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−

01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122E−01 0.72993122

E−01 0.72993122E−01 ...

                  0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293

E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 

0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−

01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293E−01 0.24350293

E−01 0.24350293E−01 0.24350293E−01];

                  

        else

            allowed_values = [16 32 64];

            fprintf(’***************************\n’);

            fprintf(’***************************\n’);

            fprintf(’ERROR\n’);

            fprintf(’ S\_n order is not allowed!\n’);

            fprintf(’ Supported values are: %i\n’,allowed_values);

            asdf;

        end

        

        %In this particular geometry, xi is the cos(theta) that I

        %need. Now I just need to write this data to file.

        

        tmpStr = sprintf(’%i’,ngroup*jt*kt−1);

        fprintf(fid,[’saleft= f0; ’ tmpStr ’Y1;\n’]);

        fprintf(fid,[’sarite= f0; ’ tmpStr ’Y1;\n’]);

        tmpStr = sprintf(’%i’,ngroup*it*kt−1);

        fprintf(fid,[’sabott= f0; ’ tmpStr ’Y1;\n’]);

        fprintf(fid,[’satop=  f0; ’ tmpStr ’Y1;\n’]);

        tmpStr = sprintf(’%i’,ngroup*it*jt−1);

        fprintf(fid,[’safrnt= f0; ’ tmpStr ’Y1;\n’]);

 

        %Now that I have those all written all nice an neat, it’s

        %time to get a little messy. First, I need to create the

        %saback array.

 

        

        %AJS 16 March 2013

        % I need to read in the weighting function created for the 

        %  the multigroup cross−sections. 

        fileNameWF =  [’/media/RESEARCH/home/ptran/PTRAN9/’ ...
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                     ’ptran_9_50_Try2/supp_matlab_files/NJOY_WeightTables/MC_weightFunctWatG8New.txt’];

        fidWF = fopen(fileNameWF,’r’);

        eGBNInd = fscanf(fidWF,’%i’,[ngroup+1,1]);

        energyNum = fscanf(fidWF,’%i’,[1,1]);

% $$$         arrayWF = zeros(energyNum,2);

        arrayWF = fscanf(fidWF,’%e, %e’,[2,energyNum])’;

        energyVal = arrayWF(:,1);

        weightFunction = arrayWF(:,2);

        energyBounds = fscanf(fidWF,’%e’,[energyNum+1,1]);

% $$$         plot(energyVal,weightFunction,’r−’)

% $$$         pause

% $$$         for ien=1:energyNum

% $$$             energyVal(ien)  = fscanf(fidWF,’%E’,[1 1])

% $$$             weightFunction(ien) = fscanf(fidWF,’%E’,[1 1])

% $$$         end

        saback = zeros(mm*4,ngroup*it*jt);

        count = 0;

        areaTotal = (xBoundEnd−xBoundStart)*(yBoundEnd−yBoundStart);

        fprintf(’Computing the Detector Response Fucntion\n’);

        for im = 1:mm            

            fprintf(’  im = %i out of %i\n’,im,mm);

            

            count = 0;

            for j = 1:jt

                fprintf(’    j = %i out of %i\n’,j,jt);

                for i = 1:it

                    areaCorr = (xGrid(i+1)−xGrid(i))*(yGrid(j+1)− ...

                                                      yGrid(j))/areaTotal;

                    areaDet =  (xGrid(i+1)−xGrid(i))*(yGrid(j+1)−yGrid(j));

                    for ign = ngroup:−1:1

                        count = count+1;

                        energyIndStart = eGBNInd(ign);

                        if(ign == ngroup)

                            energyIndEnd = eGBNInd(ign+1);

                        else

                            energyIndEnd = eGBNInd(ign+1)−1;

                        end

% $$$                         saback(im,count) = energyGroupCenters(ign)* ...

% $$$                             (1.0−exp(−muGroupCenters(ign)* ...

% $$$                                      detectPlateThickness/xi(im)))* ...

% $$$                             areaDet;

                        for ien =energyIndStart:energyIndEnd
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% $$$                             deltaE = energyBounds(ien+1)−energyBounds(ien);

% $$$                             muInterp = interp1(attenTable(:,1),attenTable(:,2),energyVal(ien));

% $$$                             saback(im,count) = saback(im,count)+energyVal(ien)* ...

% $$$                                 (1.0−exp(−muInterp* ...

% $$$                                          detectPlateThickness/xi(im)))* ...

% $$$                                 areaDet*weightFunction(ien)*deltaE;

                            deltaE = energyBounds(ien+1)−energyBounds(ien);

                            muInterp = interp1(attenTable(:,1),attenTable(:,2),energyVal(ien));

                            saback(im,count) = saback(im,count)+energyVal(ien)* ...

                                (1.0−exp(−muInterp* ...

                                         detectPlateThickness/xi(im)))* ...

                                areaDet*deltaE;

                        end

                    end

                end

            end

        end

% $$$         for im = 1:mm

% $$$             count = 0;

% $$$             for j = 1:jt

% $$$                 for i = 1:it

% $$$                     for ign = 1:ngroup

% $$$                         count = count+1;

% $$$                         saback(im,count) = xi(im)*detectorResponseFunction(ign);

% $$$                     end

% $$$                 end

% $$$             end

% $$$         end

 

        %Write this adjoint source to file

        lineStr = ’saback=’;

        prefix  = ’       ’;

 

        valHold = saback(1,1);

     

        for n=1:it*jt

        for ign = 1:ngroup

        ind = 1;

        KEEP_GOING = 1;

        while(KEEP_GOING) %This will loop until the current string

                      % has breen written

                      %Okay, I need to find how many values have the same



www.manaraa.com

4/16/13 4:21 AM /media/RESEARCH/home/PARTISN/learning/CBCT/NewDTF/PARTISN_gridStructure.m 40 of 46

                      % value as "valHold" in a row

            SAME = 1;

            count = 1;

            while(SAME && ind < mm)

                ind = ind+1;

                if(saback(ind,ign+ngroup*(n−1)) == valHold)

                    %If yes, then increment ind and count and keep looking

                    count = count+1;

                else

                    %If no, then kill this round and set it out.

                    ind = ind−1;

                    SAME = 0;

                end

            end

            %Okay, so here, I know how many times the "valHold"

            % value has been repeated, and I know the place of the

            % next value. Let’s work the former first.

            if(count > 1)

                %If the count is greater than 1, then the repeated

                % syntax needs to be used to reduce the space needed

                % to represent the geometry in the file.

                tmpStr = sprintf(’%3ir%−12.5E’,count,valHold);

                tmpStr = deblank(tmpStr);

            else

                %Then print a simple, single value is there is only

                % one of them.

                tmpStr = sprintf(’%12.5E’,valHold);

% $$$                 fprintf(’valHold = %g\n’,valHold)

% $$$                 fprintf(’ind = %3i\n’,ind);

% $$$                 fprintf(’j = %3i\n’,j);

% $$$                 fprintf(’k = %3i\n’,k);

% $$$                 fprintf(’zones(ind,j,k) = %g\n’,zones(ind,j,k));

% $$$                 pause

            end

            %Contatenate the new string (character string) onto the

            % line for writting it.

            lineStr = [lineStr ’ ’ tmpStr];

            if ind == mm

                %This means that it found the end of the

                % "string", or line of the x values. 

                %AJS 09 November 2012

                % Repeat the mm values for each octant as well.
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                %Before adding this one, you need to check to see

                %if it’s too long on the line.

                if(length(lineStr) > 57)

                    fprintf(fid,[lineStr ’\n’]);

                    lineStr = [prefix sprintf(’  3Q%i’,mm) ’;’];

                else

                    lineStr = [lineStr sprintf(’  3Q%i’,mm) ’;’];

                end

                %Since we found the end of the "string" we need to

                % get out of the loop, and move onto the next y

                % place and therefore, the next "string".

                KEEP_GOING = 0;

            else

                %Since, I am not at the end of the "string," I need

                % pick up the next value to find if it is repeated.

                ind = ind+1;

                valHold = saback(ind,ign+ngroup*(n−1));

            end

            if(length(lineStr) > 57)

                %If the line is greater than 72 characters, than

                % write it to the file and set up the next line.

                fprintf(fid,[lineStr ’\n’]);

                lineStr = prefix;

            end

        end

        end %End of for loop over the energy groups

% $$$         fflush(fid);

        end %End of loop over all detectors

    

% At the end of the line, there will be a partial row that is under

% the 72 character limit, but is a complete row, as it contains the

% rest of the data. This also needs to be written.

        if length(lineStr) > length(prefix) 

            fprintf(fid,[lineStr ’\n’]);

        end

        

        %This repeats the value for pixel (1,1) for the rest of the

        % pixels. Each pixel has the same detector response function

% $$$         tmpStr = sprintf(’%i’,it*jt−1);

% $$$         fprintf(fid,[prefix tmpStr ’Y%i;\n’],ngroup);

        

% $$$         %This repeats the detector response function for all the
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% $$$         % octants. 

% $$$         tmpStr = sprintf(’%i’,ngroup*it*jt−1);

% $$$         fprintf(fid,[prefix ’4Y’ tmpStr ’;\n’]);

            

        

    else

        %Then pick the isotropic point source.

    %Write this to the PARTISN input file.

    %this could be much more difficult, complex, and much more general

    %to implement. for now, I’m just doing it the easy way.

    tmpStr = sprintf(’%i’,jt*kt−1);

    fprintf(fid,[’sileft= f0; ’ tmpStr ’Y1;\n’]);

    fprintf(fid,[’sirite= f0; ’ tmpStr ’Y1;\n’]);

    tmpStr = sprintf(’%i’,it*kt−1);

    fprintf(fid,[’sibott= f0; ’ tmpStr ’Y1;\n’]);

    fprintf(fid,[’sitop=  f0; ’ tmpStr ’Y1;\n’]);

    tmpStr = sprintf(’%i’,it*jt−1);

    fprintf(fid,[’sifrnt= f0; ’ tmpStr ’Y1;\n’]);

    %Under the current string of things, I need to do this a little

    % different. The detector response function currently equals

    % just the energy. phi*E*mu. Phi is the forward flux, E*mu is

    % the detector response function. mu is part of the geometry,

    % so it just leaves E to be the adjoint

    % source. But... Shouldn’t this be a PDF?

    %AJS 07 November 2012

    % this last statement is wrong. Eventhough the mu is part of 

    % the geometry, it is still part of the detector response 

    % function, or the adjoint source. This has been fixed above.

    count = 0;

    for i = 1:it

        for j = 1:jt

            count = count+1;

            siback(:,count) = detectorResponseFunction(:);

        end        

    end

    lineStr = ’siback=’;

    prefix  = ’       ’;

% $$$     for j=1:it*jt;

% $$$         if mod(j,30) == 0

% $$$             fprintf(’j = %g\n’,j);

% $$$         end

        %Give the initial value of the value holder
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    ind = 1;

    valHold = siback(ind,1);

    KEEP_GOING = 1;

    while(KEEP_GOING) %This will loop until the current string

                      % has breen written

                      %Okay, I need to find how many values have the same

                      % value as "valHold" in a row

        SAME = 1;

        count = 1;

        while(SAME && ind < ngroup)

            ind = ind+1;

            if(siback(ind,1) == valHold)

                %If yes, then increment ind and count and keep looking

                count = count+1;

            else

                %If no, then kill this round and set it out.

                ind = ind−1;

                SAME = 0;

            end

        end

        %Okay, so here, I know how many times the "valHold"

        % value has been repeated, and I know the place of the

        % next value. Let’s work the former first.

        if(count > 1)

            %If the count is greater than 1, then the repeated

            % syntax needs to be used to reduce the space needed

            % to represent the geometry in the file.

            tmpStr = sprintf(’%3ir%−12.5E’,count,valHold);

            tmpStr = deblank(tmpStr);

        else

            %Then print a simple, single value is there is only

            % one of them.

            tmpStr = sprintf(’%12.5E’,valHold);

% $$$                 fprintf(’valHold = %g\n’,valHold)

% $$$                 fprintf(’ind = %3i\n’,ind);

% $$$                 fprintf(’j = %3i\n’,j);

% $$$                 fprintf(’k = %3i\n’,k);

% $$$                 fprintf(’zones(ind,j,k) = %g\n’,zones(ind,j,k));

% $$$                 pause

        end

        if ind == ngroup

            %This means that it found the end of the
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            % "string", or line of the x values. 

            tmpStr = [tmpStr ’;’];

            %Since we found the end of the "string" we need to

            % get out of the loop, and move onto the next y

            % place and therefore, the next "string".

            KEEP_GOING = 0;

        else

            %Since, I am not at the end of the "string," I need

            % pick up the next value to find if it is repeated.

            ind = ind+1;

            valHold = siback(ind,1);

        end

        %Contatenate the new string (character string) onto the

        % line for writting it.

        lineStr = [lineStr ’ ’ tmpStr];

        if(length(lineStr) > 68)

            %If the line is greater than 72 characters, than

            % write it to the file and set up the next line.

            fprintf(fid,[lineStr ’\n’]);

            lineStr = prefix;

        end

    end

% $$$         fflush(fid);

    

% $$$     end

% At the end of the line, there will be a partial row that is under

% the 72 character limit, but is a complete row, as it contains the

% rest of the data. This also needs to be written.

        if length(lineStr) > length(prefix) 

            fprintf(fid,[lineStr ’\n’]);

        end

        

        

        tmpStr = sprintf(’%i’,it*jt−1);

        fprintf(fid,[prefix tmpStr ’Y1;\n’]);

    end%End of isotorpic logical

end 

 

 

 

 

%Alright, you’re done, You just need to tell PARTISN.
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fprintf(fid,’  T\n’); 

%*******************************************************************************

%*******************************************************************************

% START BLOCK VI

% Edit input

%write the dillimeter lines to separate this block from the others.

fprintf(fid,’/\n’);

fprintf(fid,’/******************************** B L O C K VI *********************************\n’);

fprintf(fid,’/\n’);

fprintf(fid,’/PRINTED BY MATLAB FILE "PARTISN_gridStructure.m".\n’);

fprintf(fid,’/ PLEASE CONSULT THAT FILE AND THE PARTISN MANUAL FOR MORE DETAILED\n’);

fprintf(fid,’/ EXPLANATION OF WHAT THESE VARIABLES ARE\n’);

 

pted = 1; %Do the edits by the fine mesh? 0/1 = no/yes

zned = 0; %Do the edits by the zone? 0/1 = no/yes

 

 

fprintf(fid,’pted= %i\n’,pted);

fprintf(fid,’zned= %i\n’,zned);

 

 

 

% $$$ fprintf(fid,’pted=1 prplted=0 edoutf=1\n’);

% $$$ fprintf(fid,’edxs="heat" resdnt=1\n’);

 

 

 

 

 

 

 

 

 

 

%Alright, you’re done, You just need to tell PARTISN.

 

fprintf(fid,’  T\n’); 

 

 

% $$$ fflush(fid)

fclose(fid);
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